[1] Zhou C, Liu G, Yan T, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J].Fuel, 2012, 97:644-650. DOI:10.1016/j.fuel.2012.02.027.
[2] Shadman F, Uberoi M. Simultaneous condensation and reaction of metal compound vapors in porous solids[J].Industrial and Engineering Chemistry Research, 1991, 30(4):624-631. DOI:10.1021/ie00052a004.
[3] Davis S B, Gale T K, Wendt J, et al. Multicomponent coagulation and condensation of toxic metals in combustors[J].Symposium(International)on Combustion, 1998, 27(2):1785-1791.DOI:10.1016/S0082-0784(98)80020-9.
[4] Xiao H, Chen Y, Li L, et al. Study on the volatilization behavior of heavy metals(As, Cd)during co-processing in furnaces and boilers[J].Environmental Engineering Science, 2017, 34(5):333-342.DOI:10.1089/ees.2016.0144.
[5] Liu C, Huang Y, Wang X, et al. Dynamic experimental investigation on the volatilization behavior of lead and cadmium in the simulated municipal solid waste(MSW)influenced by sulfur compounds during incineration[J].Energy and Fuels, 2017, 31(1):847-853.DOI:10.1021/acs.energyfuels.6b01315.
[6] Tissari J, Sippula O, Torvela T, et al. Zinc nanoparticle formation and physicochemical properties in wood combustion—Experiments with zinc-doped pellets in a small-scale boiler[J].Fuel, 2015, 143:404-413. DOI:10.1016/j.fuel.2014.11.076.
[7] Yu J, Sun L, Wang B, et al. Study on the behavior of heavy metals during thermal treatment of municipal solid waste(MSW)components[J].Environmental Science and Pollution Research, 2016, 23(1):253-265. DOI:10.1007/s11356-015-5644-7.
[8] Lu P, Huang Q, Bourtsalas A C, et al. Review on fate of chlorine during thermal processing of solid wastes[J].Journal of Environmental Sciences(China), 2019, 78:13-28. DOI:10.1016/j.jes.2018.09.003.
[9] Linak W P, Wendt J. Toxic metal emissions from incineration:Mechanisms and control[J].Progress in Energy and Combustion Science, 1993, 19(2):145-185. DOI:10.1016/0360-1285(93)90014-6.
[10] Yao H, Naruse I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J].Particuology, 2009, 7(6):477-482. DOI:10.1016/j.partic.2009.06.004.
[11] Scotto M V, Uberoi M, Peterson, T W, et al. Metal capture by sorbents in combustion processes[J].Fuel Processing Technology, 1994, 39(1/2/3):357-372. DOI:10.1016/0378-3820(94)90192-9.
[12] Wang J, Takarada T. Fixation of lead chloride on kaolinite and bentonite at temperatures between 550 and 950 ℃[J].Industrial and Engineering Chemistry Research, 2000, 39(2):335-341.DOI:10.1021/ie9905097.
[13] Xu Y, Liu X, Wang H, et al. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000 MW coal-fired power station[J].Environmental Science and Technology, 2018, 52(15):8718-8724. DOI:10.1021/acs.est.8b02251.
[14] Zhang X, Liu H, Xing H, et al. Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method[J].Fuel, 2017, 191:198-203. DOI:10.1016/j.fuel.2016.11.067.
[15] Wang G, Jensen P A, Wu H, et al. Potassium capture by kaolin, Part 1:KOH[J]. Energy and Fuels, 2018, 32(2):1851-1862. DOI:10.1021/acs.energyfuels.7b03645.
[16] Wang X, Huang Y, Zhong Z, et al. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J].Fuel Processing Technology, 2014, 119:228-235.DOI:10.1016/j.fuproc.2013.11.012.
[17] Wendt J, Lee S. High-temperature sorbents for Hg, Cd, Pb, and other trace metals:Mechanisms and applications[J].Fuel, 2010, 89(4):894-903. DOI:10.1016/j.fuel.2009.01.028.
[18] Yu S, Zhang C, Ma L, et al. Experimental and DFT studies on the characteristics of PbO/PbCl2 adsorption by Si/Al-based sorbents in the simulated flue gas[J].Journal of Hazardous Materials, 2021, 407:123617. DOI:10.1016/j.jhazmat.2020.124742.
[19] Wang X, Huang Y, Zhong Z, et al. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016, 166:333-339. DOI:10.1016/j.fuel.2015.11.004.
[20] Wang X, Huang Y, Pan Z, et al. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J].Journal of Hazardous Materials, 2015, 295:43-54. DOI:10.1016/j.jhazmat.2015.03.020.
[21] Wang X, Chen M, Liu C, et al. Typical gaseous semi-volatile metals adsorption by meta-kaolinite:A DFT study[J]. International Journal of Environmental Research and Public Health, 2018, 15(10):1-14. DOI:10.3390/ijerph15102154.
[22] Ke C, Ma X, Tang Y, et al. Effects of natural and modified calcium-based sorbents on heavy metals of food waste under oxy-fuel combustion[J].Bioresource Technology, 2019, 271:251-257.DOI:10.1016/j.biortech.2018.09.109.
[23] Zheng W, Ma X, Tang Y, et al. Heavy metal control by natural and modified limestone during wood sawdust combustion in a CO2/O2 atmosphere[J].Energy and Fuels, 2018, 32(2):2630-2637.DOI:10.1021/acs.energyfuels.7b03365.
[24] Wang S, He P, Shao L, et al. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment[J].Chemosphere, 2016, 161:242-250.DOI:10.1016/j.chemosphere.2016.07.020.
[25] Wang X, Huang Y, Liu C, et al. Dynamic volatilization behavior of Pb and Cd during fixed bed waste incineration:Effect of chlorine and calcium oxide[J].Fuel, 2017, 192:1-9. DOI:10.1016/j.fuel.2016.12.002.
[26] Zha J, Zhu Z, Huang Y, et al. Gaseous CdCl2 and PbCl2 adsorption by limestone at high temperature:Mechanistic study through experiments and theoretical calculation[J].Applied Surface Science, 2021, 555:149669. DOI:10.1016/j.apsusc.2021.149669.
[27] Chen D, Hu H, Xu Z, et al. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J].Chemical Engineering Journal, 2015, 267:201-206. DOI:10.1016/j.cej.2015.01.035.
[28] Liu X, Xu Y, Qi J, et al. Effects of kaolin-limestone blended additive on the formation and emission of particulate matter:Field study on a 1 000 MW coal-firing power station[J]. Journal of Hazardous Materials, 2020, 399:DOI:10.1016/j.jhazmat.2020.123091.
[29] Zha J, Huang Y, Clough P, et al. Desulfurization using limestone during sludge incineration in a fluidized bed furnace:Increased risk of particulate matter and heavy metal emissions[J].Fuel, 2020, 273:117614. DOI:10.1016/j.fuel.2020.117614.
[30] Zha J, Huang Y, Xia W, et al. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration[J].Fuel, 2018, 229:241-247. DOI:10.1016/j.fuel.2018.05.015.
[31] Folgueras M B, Díaz R M, Xiberta J, et al. Effect of inorganic matter on trace element behavior during combustion of coal-sewage sludge blends[J].Energy and Fuels, 2007, 21(2):744-755.DOI:10.1021/ef060536r.
[32] Wang T, Xue Y, Zhou M, et al. Effect of addition of rice husk on the fate and speciation of heavy metals in the bottom ash during dyeing sludge incineration[J].Journal of Cleaner Production, 2020, 244:DOI:10.1016/j.jclepro.2019.118851.
[33] Bozaghian M, Rebbling A, Larsson S, et al. Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials[J]. Applied Energy, 2018, 212:1400-1408. DOI:10.1016/j.apenergy.2017.12.112.
[34] Zha J, Huang Y, Clough P, et al. Green production of a novel sorbent from kaolin for capturing gaseous PbCl2 in a furnace[J].Journal of Hazardous Materials, 2021, 404:124045. DOI:10.1016/j.jhazmat.2020.124045.
[35] Okada K, Watanabe N, Jha K V, et al. Effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3[J]. Applied Clay Science, 2003, 23(5/6):329-336. DOI:10.1016/S0169-1317(03)00132-7.