[1] Wang Y H, Zhang P, Qin G J. Reliability assessment of pitting corrosion of pipeline under spatiotemporal earthquake including spatial-dependent corrosion growth[J].Process Safety and Environmental Protection, 2021, 148:166-178. DOI:10.1016/j.psep.2020.10.005.
[2] Mahmoodian M, Li C Q. Failure assessment and safe life prediction of corroded oil and gas pipelines[J]. Journal of Petroleum Science and Engineering, 2017, 151:434-438. DOI:10.1016/j.petrol.2016.12.029.
[3] Wang W H, Shen K L, Wang B B, et al. Failure probability analysis of the urban buried gas pipelines using Bayesian networks[J]. Process Safety and Environmental Protection, 2017, 111:678-686. DOI:10.1016/j.psep.2017.08.040.
[4] Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5):1037-1048. DOI:10.1007/s10845-014-0933-4.
[5] Gong C Q, Zhou W X. First-order reliability method-based system reliability analyses of corroding pipelines considering multiple defects and failure modes[J].Structure and Infrastructure Engineering, 2017, 13(11):1451-1461. DOI:10.1080/15732479.2017.1285330.
[6] Nahal M, Chateauneuf A, Sahraoui Y. Reliability analysis of irregular zones in pipelines under both effects of corrosion and residual stress[J]. Engineering Failure Analysis, 2019, 98:177-188. DOI:10.1016/j.engfailanal.2019.01.081.
[7] Bouledroua O, Zelmati D, Hassani M. Inspections, statistical and reliability assessment study of corroded pipeline[J]. Engineering Failure Analysis, 2019, 100:1-10. DOI:10.1016/j.engfailanal.2019.02.012.
[8] Hasan S, Khan F, Kenny S. Probability assessment of burst limit state due to internal corrosion[J]. International Journal of Pressure Vessels and Piping, 2012, 89:48-58. DOI:10.1016/j.ijpvp.2011.09.005.
[9] Leira B J, NE6;ss A, Brandrud NE6;ss O E. Reliability analysis of corroding pipelines by enhanced Monte Carlo simulation[J]. International Journal of Pressure Vessels and Piping, 2016, 144:11-17. DOI:10.1016/j.ijpvp.2016.04.003.
[10] Mohamed E A B S, Keshtegar B, Correia J A F O, et al. Reliability analysis based on hybrid algorithm of M5 model tree and Monte Carlo simulation for corroded pipelines:Case of study X60 Steel grade pipes[J]. Engineering Failure Analysis, 2019, 97:793-803. DOI:10.1016/j.engfailanal.2019.01.061.
[11] Tee K F, Khan L R. Reliability analysis of underground pipelines with correlations between failure modes and random variables[J].Proceedings of the Institution of Mechanical Engineers, Part O:Journal of Risk and Reliability, 2014, 228(4):362-370. DOI:10.1177/1748006x13520145.
[12] Mondal B C, Dhar A S. Finite-element evaluation of burst pressure models for corroded pipelines[J]. Journal of Pressure Vessel Technology, 2017, 139(2):021702. DOI:10.1115/1.4034408.
[13] Zelmati D, Ghelloudj O, Amirat A. Reliability estimation of pressurized API 5L X70 pipeline steel under longitudinal elliptical corrosion defect[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9/10/11/12):2777-2783. DOI:10.1007/s00170-016-9580-6.
[14] Shuai Y, Shuai J, Xu K. Probabilistic analysis of corroded pipelines based on a new failure pressure model[J]. Engineering Failure Analysis, 2017, 81:216-233. DOI:10.1016/j.engfailanal.2017.06.050.
[15] Nahal M, Khelif R, Bourenane R, et al. Pipelines reliability analysis under corrosion effect and residual stress[J]. Arabian Journal for Science and Engineering, 2015, 40(11):3273-3283. DOI:10.1007/s13369-015-1723-9.
[16] Tee K F, Khan L R, Li H S. Application of subset simulation in reliability estimation of underground pipelines[J].Reliability Engineering & System Safety, 2014, 130:125-131. DOI:10.1016/j.ress.2014.05.006.
[17] Al-Amin M, Zhou W X. Evaluating the system reliability of corroding pipelines based on inspection data[J]. Structure and Infrastructure Engineering, 2014, 10(9):1161-1175. DOI:10.1080/15732479.2013.793725.
[18] Ossai C I, Boswell B, Davies I. Markov chain modelling for time evolution of internal pitting corrosion distribution of oil and gas pipelines[J]. Engineering Failure Analysis, 2016, 60:209-228. DOI:10.1016/j.engfailanal.2015.11.052.
[19] Pesinis K, Tee K F. Statistical model and structural reliability analysis for onshore gas transmission pipelines[J]. Engineering Failure Analysis, 2017, 82:1-15. DOI:10.1016/j.engfailanal.2017.08.008.
[20] Gong C, Zhou W. Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes[J].Reliability Engineering & System Safety, 2018, 169:199-208. DOI:10.1016/j.ress.2017.08.023.
[21] Wen K, He L, Liu J, et al. An optimization of artificial neural network modeling methodology for the reliability assessment of corroding natural gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2019, 60:1-8. DOI:10.1016/j.jlp.2019.03.010.
[22] Palencia O G, Teixeira A P, Guedes Soares C. Safety of pipelines subjected to deterioration processes modeled through dynamic Bayesian networks[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(1):011602. DOI:10.1115/1.4040573.
[23] Wang Y F, Su C, Xie M J. Remaining useful life prediction of corroded oil pipelines based on binary inverse Gaussian process[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(6):1038-1044. DOI:10.3969/j.issn.1001-0505.2020.06.007. (in Chinese)
[24] Li J, Liang B Q, Li C, et al. Calculation methods for the gas pipeline failure rate[J].Journal of Petroleum Science and Engineering, 2019, 174:229-234. DOI:10.1016/j.petrol.2018.11.020.
[25] Zhang P, Su L B, Qin G J, et al. Failure probability of corroded pipeline considering the correlation of random variables[J].Engineering Failure Analysis, 2019, 99:34-45. DOI:10.1016/j.engfailanal.2019.02.002.
[26] Aljaroudi A, Thodi P, Akinturk A, et al. Probabilistic methods for predicting the remaining life of offshore pipelines[J]. Journal of Pressure Vessel Technology, 2017, 139(4):041701. DOI:10.1115/1.4036217.
[27] Liu A H, Chen K, Huang X F, et al. Corrosion failure probability analysis of buried gas pipelines based on subset simulation[J].Journal of Loss Prevention in the Process Industries, 2019, 57:25-33. DOI:10.1016/j.jlp.2018.11.008.
[28] Velázquez J C, Caleyo F, Valor A, et al. Predictive model for pitting corrosion in buried oil and gas pipelines[J]. Corrosion, 2009, 65(5):332-342. DOI:10.5006/1.3319138.
[29] Siraj T, Zhou W X. Evaluation of statistics of metal-loss corrosion defect profile to facilitate reliability analysis of corroded pipelines[J]. International Journal of Pressure Vessels and Piping, 2018, 166:107-115. DOI:10.1016/j.ijpvp.2018.08.007.
[30] Abdelghani M, Tewfik G, Djahida D, et al. Prediction of the rupture pressure of transmission pipelines with corrosion defects[J]. Journal of Pressure Vessel Technology, 2018, 140(4):041701. DOI:10.1115/1.4039698.
[31] Su C, Wang S J, Xu Y Q. Dynamic reliability of hydraulic system based on Monte Carlo simulation[J]. Journal of Southeast University(Natural Science Edition), 2006, 36(3):370-373. DOI:10.3321/j.issn:1001-0505.2006.03.007. (in Chinese)