[1] Reidy B, Haase A, Luch A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications[J]. Materials, 2013, 6(6): 2295-2350. DOI: 10.3390/ma6062295.
[2] Zhang C, Hu Z, Li P, et al. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment[J]. Science of the Total Environment, 2016, 572: 852-873. DOI: 10.1016/j.scitotenv.2016.07.145.
[3] Liu T, Xu S R, Lu S Y, et al. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors[J]. Science of the Total Environment, 2019, 651: 2247-2268. DOI: 10.1016/j.scitotenv.2018.10.087.
[4] Liu F F, Fan J L, Du J H, et al. Intensified nitrogen transformation in intermittently aerated constructed wetlands: Removal pathways and microbial response mechanism[J]. Science of the Total Environment, 2019, 650: 2880-2887. DOI: 10.1016/j.scitotenv.2018.10.037.
[5] Huang J, Cao C, Yan C N, et al. Comparison of & ITIris pseudacorus & IT wetland systems with unplanted systems on pollutant removal and microbial community under nanosilver exposure[J]. Science of the Total Environment, 2018, 624: 1336-1347. DOI: 10.1016/j.scitotenv.2017.12.222.
[6] Huang J, Cao C, Yan C N, et al. Impacts of silver nanoparticles on the nutrient removal and functional bacterial community in vertical subsurface flow constructed wetlands[J]. Bioresource Technology, 2017, 243: 1216-1226. DOI: 10.1016/j.biortech.2017.07.178.
[7] Taylor C R, Hook P B, Stein O R, et al. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms[J]. Ecological Engineering, 2011, 37(5): 703-710. DOI: 10.1016/j.ecoleng.2010.05.007.
[8] Werker A G, Dougherty J M, McHenry J L, et al. Treatment variability for wetland wastewater treatment design in cold climates[J]. Ecological Engineering, 2002, 19(1): 1-11. DOI: 10.1016/S0925-8574(02)00016-2.
[9] Huang J, Yan C N, Cao C, et al. Performance evaluation of Iris pseudacorus constructed wetland for advanced wastewater treatment under long-term exposure to nanosilver[J]. Ecological Engineering, 2018, 116: 188-195. DOI: 10.1016/j.ecoleng.2018.03.003.
[10] Picard C R, Fraser L H, Steer D. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms[J]. Bioresource Technology, 2005, 96(9): 1039-1047. DOI: 10.1016/j.biortech.2004.09.007.
[11] Dong X, Reddy G B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J]. Bioresource Technology, 2010, 101(4): 1175-1182. DOI: 10.1016/j.biortech.2009.09.071.
[12] Kragelund C, Levantesi C, Borger A, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants[J]. FEMS Microbiology Ecology, 2007, 59(3): 671-682. DOI: 10.1111/j.1574-6941.2006.00251.x.
[13] Kim M J, Ko D, Ko K, et al. Effects of silver-graphene oxide nanocomposites on soil microbial communities[J]. Journal of Hazardous Materials, 2018, 346: 93-102. DOI:10.1016/j.jhazmat.2017.11.032.
[14] Jeon C O, Lee D S, Park J M. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor[J]. Water Research, 2003, 37(9): 2195-2205. DOI: 10.1016/s0043-1354(02)00587-0.
[15] Liu X B, Yang X Y, Hu X B, et al. Comprehensive metagenomic analysis reveals the effects of silver nanoparticles on nitrogen transformation in constructed wetlands[J]. Chemical Engineering Journal, 2019, 358: 1552-1560. DOI: 10.1016/j.cej.2018.10.151.
[16] Nguyen H N, Rodrigues D F. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation[J]. Journal of Hazardous Materials, 2018, 343: 200-207. DOI: 10.1016/j.jhazmat.2017.09.032.
[17] Ren W, Ren G, Teng Y, et al. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community[J]. Journal of Hazardous Materials, 2015, 297: 286-294. DOI: 10.1016/j.jhazmat.2015.05.017.
[18] Zhang Z, Gao P, Cheng J, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63. DOI: 10.1016/j.watres.2018.02.025.
[19] Kadnikov V V, Ivasenko D A, Beletskii A V, et al. A novel uncultured bacterium of the family Gallionellaceae: Description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage[J]. Microbiology, 2016, 85(4): 449-461. DOI: 10.1134/s002626171604010x.
[20] Emerson D, Field E K, Chertkov O, et al. Comparative genomics of freshwater Fe-oxidizing bacteria: Implications for physiology, ecology, and systematics[J]. Front Microbiology, 2013, 4: 254. DOI: 10.3389/fmicb.2013.00254.
[21] Remmas N, Melidis P, Katsioupi E, et al. Effects of high organic load on amoA and nirS gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate[J]. Bioresource Technology, 2016, 220: 557-565. DOI: 10.1016/j.biortech.2016.09.009.
[22] Bouali M, Zrafi-Nouira I, Bakhrouf A, et al. The structure and spatio-temporal distribution of the Archaea in a horizontal subsurface flow constructed wetland[J]. Science of the Total Environment, 2012, 435-436: 465-471. DOI: 10.1016/j.scitotenv.2012.07.047.
[23] Wu L S, Nie Y Y, Yang Z R, et al. Responses of soil inhabiting nitrogen-cycling microbial communities to wetland degradation on the Zoige Plateau, China[J]. Journal of Mountain Science, 2016, 13(12): 2192-2204. DOI: 10.1007/s11629-016-4004-5.