[1] Afsar S, Palacios J J, Puente J, et al. Multi-objective enhanced memetic algorithm for green job shop scheduling with uncertain times[J]. Swarm and Evolutionary Computation, 2022, 68: 101016. DOI: 10.1016/j.swevo.2021.101016.
[2] Li H C, Duan J G, Zhang Q L. Multi-objective integrated scheduling optimization of semi-combined marine crankshaft structure production workshop for green manufacturing[J].Transactions of the Institute of Measurement and Control, 2021, 43(3): 579-596. DOI:10.1177/0142331220945917.
[3] Zong N F, Zhang H, Liu Y, et al. Research and application progress of rolling down technology for continuous casting bearing steel[J]. Bearing, 2018(1): 58-64. DOI:10.19533/j.issn 1000-3762.2018.01.017. (in Chinese)
[4] Geng K F, Ye C M, Wu S X, et al. Multi-objective green reentrant hybrid flow shop scheduling under tou price[J]. China Mechanical Engineering, 2020, 31(12): 1469-1480. DOI:10.3969/j.issn.1004-132X.2020.12.011. (in Chinese)
[5] Wang L, Wang J J, Wu C G. Advances in green shop scheduling and optimization[J]. Control and Decision, 2018, 33(3): 385-391. DOI:10.13195/j.kzyjc.2017.0215. (in Chinese)
[6] Bekkar A, Belalem G, Beldjilali B. Iterated greedy insertion approaches for the flexible job shop scheduling problem with transportation times constraint[J]. International Journal of Manufacturing Research, 2019, 14(1): 43-66. DOI:10.1504/ijmr.2019.096746.
[7] Tian S L, Wang T Y, Zhang L, et al. An energy-efficient scheduling approach for flexible job shop problem in an internet of manufacturing things environment[J].IEEE Access, 2019, 7: 62695-62704. DOI:10.1109/ACCESS.2019.2915948.
[8] Yüksel D, Ta瘙塂getiren M F, Kandiller L, et al. An energy-efficient bi-objective no-wait permutation flowshop scheduling problem to minimize total tardiness and total energy consumption[J]. Computers & Industrial Engineering, 2020, 145: 106431. DOI: 10.1016/j.cie.2020.106431.
[9] Lei D M, Zheng Y L, Guo X P. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption[J].International Journal of Production Research, 2017, 55(11): 3126-3140. DOI:10.1080/00207543.2016.1262082.
[10] Zheng X L, Wang L. A collaborative multiobjective fruit fly optimization algorithm for the resource constrained unrelated parallel machine green scheduling problem[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(5): 790-800. DOI:10.1109/TSMC.2016.2616347.
[11] Deng G L, Zhang Z W, Jiang T H, et al. Total flow time minimization in no-wait job shop using a hybrid discrete group search optimizer[J]. Applied Soft Computing, 2019, 81: 105480. DOI: 10.1016/j.asoc.2019.05.007.
[12] Sang Y W, Tan J P. Many-objective flexible job shop scheduling problem with green consideration[J]. Energies, 2022, 15(5):1-17. DOI: 10.3390/EN15051884.
[13] Gong G L, Deng Q W, Gong X R, et al. A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators[J].Journal of Cleaner Production, 2018, 174: 560-576. DOI: 10.1016/j.jclepro.2017.10.188.
[14] Ic Y T, Saralolu Güler E, Cabbarolu C, et al. Optimisation of cutting parameters for minimizing carbon emission and maximising cutting quality in turning process[J]. International Journal of Production Research, 2018, 56(11): 4035-4055. DOI:10.1080/00207543.2018.1442949.
[15] Li Y B, Huang W X, Wu R, et al. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem[J].Applied Soft Computing, 2020, 95: 106544. DOI: 10.1016/j.asoc.2020.106544.
[16] Zhang M Y, Yan J H, Zhang Y L, et al. Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs[J].Procedia CIRP, 2019, 80: 251-256. DOI: 10.1016/j.procir.2019.01.062.
[17] Zhang Y F, Wang J, Liu Y. Game theory based real-time multi-objective flexible job shop scheduling considering environmental impact[J].Journal of Cleaner Production, 2017, 167: 665-679. DOI: 10.1016/j.jclepro.2017.08.068.
[18] Wang R B, Xu H Y, Guo J. Adaptive non-dominated sorting genetic algorithm[J]. Control and Decision, 2018, 33(12): 2191-2196. DOI:10.13195/j.kzyjc.2017.1032. (in Chinese)
[19] Ju L Y, Yang J J, Zhang J B, et al. Improved NSGA for multi-objective flexible job-shop scheduling problem[J]. Computer Engineering and Applications, 2019, 55(13): 260-265, 270. DOI:10.3778/j.issn.1002-8331.1809-0246. (in Chinese)
[20] Xu Y, Huang H S, Hu L. A hybrid immune genetic algorithm for job shop scheduling[J]. Machinery Design and Manufacture, 2020(9): 287-291. DOI:10.19356/j.cnki.1001-3997.2020.09.067. (in Chinese)