|Table of Contents|

[1] Wen Shangwu, Kong Dewen, Sun Lishan, Liu Yina, et al. Impact and controlling strategy of truck platoons in divergingareas under a connected and automated environment [J]. Journal of Southeast University (English Edition), 2023, 39 (2): 142-152. [doi:10.3969/j.issn.1003-7985.2023.02.005]
Copy

Impact and controlling strategy of truck platoons in divergingareas under a connected and automated environment()
智能网联环境下分流区卡车编队交通影响与控制策略
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 2
Page:
142-152
Research Field:
Traffic and Transportation Engineering
Publishing date:
2023-06-20

Info

Title:
Impact and controlling strategy of truck platoons in divergingareas under a connected and automated environment
智能网联环境下分流区卡车编队交通影响与控制策略
Author(s):
Wen Shangwu Kong Dewen Sun Lishan Liu Yina Cheng Zeyu Zhang Kangyu
Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100024, China
温尚武 孔德文 孙立山 刘伊娜 成泽宇 张康宇
北京工业大学北京市交通工程重点实验室, 北京100024
Keywords:
truck platoon diverging area truck barrier effect controlling strategy traffic simulation
卡车编队 分流区 大车屏障效应 控制策略 交通仿真
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2023.02.005
Abstract:
To alleviate the truck barrier effect in diverging areas under a connected and automated environment, a lane-changing model that conforms to diversion characteristics was constructed. The effects of the truck proportion, the arriving flow rate of going-straight vehicles, the arriving flow rate of departing vehicles, the time headway, and the platoon length on the truck barrier effect were analyzed. A truck platoon controlling strategy(TPCS)was proposed and evaluated by integrating a lane change control strategy and platoon length limit strategy. The results show that different combinations of the truck proportion, the arriving flow rate of going-straight vehicles, and the arriving flow rate of departing vehicles are the macroscopic conditions for the formation of truck barriers. From the microscopic aspect, five or more trucks traveling in a platoon with a time headway no more than 2 s will cause the truck barrier effect. In addition, compared to the platoon and non-platoon statuses, TPCS can improve the off-ramp flow by up to 60% and 43%, respectively. Therefore, when the conditions for the formation of the truck barrier are met, traffic managers can implement TPCS to alleviate the truck barrier effect.
为缓解智能网联环境下分流区的大车屏障效应, 构建了符合分流特性的变道模型, 分析了卡车比例、直行车辆进入概率、分流车辆进入概率、车头时距与编队规模对大车屏障效应的影响.将变道控制策略和编队规模限制策略相结合, 提出并评估了卡车编队控制策略(TPCS).结果表明, 卡车比例、直行车辆进入概率与分流车辆进入概率的不同组合是大车屏障效应产生的宏观条件.在微观层面, 5辆及以上卡车以不超过2 s的车头时距编队行驶是大车屏障效应产生的临界条件.相较于编队状态与非编队状态, TPCS可分别将出口匝道流量提高60%和43%.因此, 满足大车屏障效应的产生条件时, 交通管理者可实施TPCS缓解大车屏障效应.

References:

[1] Shladover S E, Su D, Lu X Y. Impacts of cooperative adaptive cruise control on freeway traffic flow[J].Transportation Research Record, 2012, 2324(1): 63-70. DOI: 10.3141/2324-08.
[2] Bhoopalam A K, Agatz N, Zuidwijk R. Planning of truck platoons: A literature review and directions for future research[J].Transportation Research Part B: Methodological, 2018, 107: 212-228. DOI: 10.1016/j.trb.2017.10.016.
[3] Tsugawa S, Jeschke S, Shladover S E. A review of truck platooning projects for energy savings[J].IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 68-77. DOI: 10.1109/tiv.2016.2577499.
[4] Shladover S E, Nowakowski C, Lu X Y, et al. Cooperative adaptive cruise control: Definitions and operating concepts[J].Transportation Research Record, 2015, 2489(1): 145-152. DOI: 10.3141/2489-17.
[5] McAuliffe B, Lammert M, Lu X Y, et al. Influences on energy savings of heavy trucks using cooperative adaptive cruise control[J].SAE Technical Paper, 2018: 1181. DOI: 10.4271/2018-01-1181.
[6] Garber N J, Gadiraju R.Effects of truck strategies on traffic flow and safety on multilane highways(abridgment)[M]. Washington, DC, USA: Transportation Research Board, 1990: 49-54.
[7] Tabibi M.Design and Control of automated truck traffic at motorway ramps[M]. Delft, the Netherlands: The Netherlands TRAIL Research School, 2004: 69-75.
[8] Calvert S C, Schakel W J, van Arem B. Evaluation and modelling of the traffic flow effects of truck platooning[J].Transportation Research Part C: Emerging Technologies, 2019, 105: 1-22. DOI: 10.1016/j.trc.2019.05.019.
[9] Zhao C, Li L, Li J W, et al. The impact of truck platoons on the traffic dynamics around off-ramp regions[J].IEEE Access, 2021, 9: 57010-57019. DOI: 10.1109/access.2021.3072070.
[10] Hsu A, Eskafi F, Sachs S, et al. Protocol design for an automated highway system[J].Discrete Event Dynamic Systems, 1993, 2: 183-206. DOI: 10.1007/bf01797158.
[11] Elefteriadou L A. The highway capacity manual 6th edition: A guide for multimodal mobility analysis[J].ITE journal, 2016, 86(4): 14-18.
[12] Wang H, Qin Y Y, Wang W, et al. Stability of CACC-manual heterogeneous vehicular flow with partial CACC performance degrading[J].Transportmetrica B: Transport Dynamics, 2019, 7(1): 788-813. DOI: 10.1080/21680566.2018.1517058.
[13] Xiao L, Wang M, Schakel W, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J].Transportation Research Part C: Emerging Technologies, 2018, 96: 380-397. DOI: 10.1016/j.trc.2018.10.008.
[14] Cui J F, Hu B X, Xia H, et al. Comparative analysis of simulation of multi-car-following modes under SUMO platform[J].Journal of Chongqing University, 2021, 44(7): 43-54, 98. DOI:10.11835/j.issn.1000-582X.2020.250. (in Chinese)
[15] Erdmann J. SUMO’s lane-changing model[C] //Modeling Mobility with Open Data: 2nd SUMO Conference 2014. Berlin, Germany, 2015: 105-123. DOI: 10.1007/978-3-319-15024-6_7.
[16] Liu H, Kan X D, Shladover S E, et al. Modeling impacts of cooperative adaptive cruise control on mixed traffic flow in multi-lane freeway facilities[J].Transportation Research Part C: Emerging Technologies, 2018, 95: 261-279. DOI: 10.1016/j.trc.2018.07.027.
[17] Hou J.The traffic characteristics and capacity analysis method for diverge influence area on multi-lane freeways[D]. Nanjing: Southeast University, 2018.(in Chinese)
[18] Sun L S, Zhao S H, Kong D W, et al. Formation conditions and effects of large vehicle barrier on confluence area under automatic driving[J].Journal of Beijing University of Technology, 2022, 48(8): 851-859. DOI:10.11936/bjutxb2021040021. (in Chinese)

Memo

Memo:
Biographies: Wen Shangwu(1999—), male, graduate; Sun Lishan(corresponding author), male, doctor, professor, lssun@bjut.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.52002008), the Science and Technology Plan Projects of Beijing Municipal Commission of Transport(No.11000022210200021338-XM001), the Beijing Municipal Education Commission Science and Technology Program General Project(No.KM202110005002).
Citation: Wen Shangwu, Kong Dewen, Sun Lishan, et al.Impact and controlling strategy of truck platoons in diverging areas under a connected and automated environment[J].Journal of Southeast University(English Edition), 2023, 39(2):142-152.DOI:10.3969/j.issn.1003-7985.2023.02.005.
Last Update: 2023-06-20