|Table of Contents|

[1] Zhang Xinjie, Zhu Hangjie, Liu Yao, et al. Stepped spiral microchannels for rapid blood plasma separation [J]. Journal of Southeast University (English Edition), 2023, 39 (2): 176-186. [doi:10.3969/j.issn.1003-7985.2023.02.009]
Copy

Stepped spiral microchannels for rapid blood plasma separation()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 2
Page:
176-186
Research Field:
Mechanical Engineering
Publishing date:
2023-06-20

Info

Title:
Stepped spiral microchannels for rapid blood plasma separation
Author(s):
Zhang Xinjie1 2 Zhu Hangjie1 Liu Yao1 Gu Qiao3 Zhang Yuhang1Oseyemi Ayobami Elisha4 Lü Fangrui1 Ni Zhonghua2
1College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
2School of Mechanical Engineering, Southeast University, Nanjing 211189, China
3Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
4Department of Mechanical Engineering, York University, Toronto, ON M3J1P3, Canada
Keywords:
microfluidics inertial focusing stepped spiral channel blood plasma separation secondary flow regulation
PACS:
TH77
DOI:
10.3969/j.issn.1003-7985.2023.02.009
Abstract:
Conventional ways of blood processing, such as centrifugation and filtration, are fairly limited by processing time, separation purity, clogging, and other factors. To solve this problem, a high-throughput, inertial microfluidic device composed of a stepped spiral channel is proposed for the separation of plasma from high-concentration blood. First, the particle-focusing characteristics of the stepped spiral channel are studied through the coupling of laminar flow and particle tracking modules in the COMSOL Multiphysics�AE; software. Next, polystyrene beads are used to investigate the inertial focusing performances of the stepped spiral channel at different flow rates. Based on the experimental results of particle focusing, an optimized stepped spiral channel is applied in blood plasma separation from samples of different cell concentrations. It can be observed that the reject ratios of the blood cells are(99.72±0.13)% and(99.44±0.17)% with hematocrit(HCT)values of 0.9% and 2.25%, respectively, at an optimal flow rate of 1.5 mL/min. The ratios of blood cells rejected by the stepped spiral channel are(97.02±0.56)% and(92.92±1.53)% at ultrahigh HCT values of 4.5% and 9%, respectively. The experimental findings demonstrate that the stepped spiral channel can efficiently separate plasma from ultrahigh-concentration blood samples.

References:

[1] Rafeie M, Zhang J, Asadnia M, et al. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation[J]. Lab on a Chip, 2016, 16(15): 2791-2802. DOI: 10.1039/C6LC00713A.
[2] Lee M G, Shin J H, Choi S, et al. Enhanced blood plasma separation by modulation of inertial lift force[J].Sensors and Actuators B: Chemical, 2014, 190: 311-317. DOI: 10.1016/j.snb.2013.08.092.
[3] Farahinia A, Zhang W J, Badea I. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review[J]. Journal of Science: Advanced Materials and Devices, 2021, 6(3): 303-320. DOI: 10.1016/j.jsamd.2021.03.005.
[4] Tang W L, Zhu S, Jiang D, et al. Channel innovations for inertial microfluidics[J].Lab on a Chip, 2020, 20(19): 3485-3502. DOI: 10.1039/d0lc00714e.
[5] Zhang X J, Zhu Z X, Xiang N, et al. Automated microfluidic instrument for label-free and high-throughput cell separation[J].Analytical Chemistry, 2018, 90(6): 4212-4220. DOI: 10.1021/acs.analchem.8b00539.
[6] Xiang N, Ni Z H. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics[J].Lab on a Chip, 2022, 22(4): 757-767. DOI: 10.1039/d1lc00944c.
[7] Segré G, Silberberg A. Radial particle displacements in poiseuille flow of suspensions[J]. Nature, 1961, 189(4760): 209-210. DOI: 10.1038/189209a0.
[8] Moloudi R, Oh S, Yang C, et al. Inertial particle focusing dynamics in a trapezoidal straight microchannel: Application to particle filtration[J]. Microfluidics and Nanofluidics, 2018, 22(3): 33. DOI: 10.1007/s10404-018-2045-5.
[9] Wang X, Zandi M, Ho C C, et al. Single stream inertial focusing in a straight microchannel[J]. Lab on a Chip, 2015, 15(8): 1812-1821. DOI: 10.1039/c4lc01462f.
[10] Liu C, Hu G Q, Jiang X Y, et al. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers[J].Lab on a Chip, 2015, 15(4): 1168-1177. DOI: 10.1039/C4LC01216J.
[11] Hur S C, Henderson-MacLennan N K, McCabe E R B, et al. Deformability-based cell classification and enrichment using inertial microfluidics[J]. Lab on a Chip, 2011, 11(5): 912-920. DOI: 10.1039/C0LC00595A.
[12] Hur S C, Choi S E, Kwon S, et al. Inertial focusing of non-spherical microparticles[J]. Applied Physics Letters, 2011, 99(4): 044101. DOI: 10.1063/1.3608115.
[13] Yuan D, Zhang J, Sluyter R, et al. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays[J]. Lab on a Chip, 2016, 16(20): 3919-3928. DOI: 10.1039/C6LC00843G.
[14] Jiang D, Huang D, Zhao G T, et al. Numerical simulation of particle migration in different contraction-expansion ratio microchannels[J].Microfluidics and Nanofluidics, 2019, 23(1): 7. DOI: 10.1007/s10404-018-2176-8.
[15] Lee M G, Choi S, Kim H J, et al. Inertial blood plasma separation in a contraction-expansion array microchannel[J].Applied Physics Letters, 2011, 98(25): 253702. DOI: 10.1063/1.3601745.
[16] Bhagat A A S, Hou H W, Li L D, et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation[J]. Lab on a Chip, 2011, 11(11): 1870-1878. DOI: 10.1039/C0LC00633E.
[17] Choi S, Karp J M, Karnik R. Cell sorting by deterministic cell rolling[J]. Lab on a Chip, 2012, 12(8): 1427-1430. DOI: 10.1039/C2LC21225K.
[18] Golden J P, Kim J S, Erickson J S, et al.Multi-wavelength microflow cytometer using groove-generated sheath flow[J]. Lab on a Chip, 2009, 9(13): 1942-1950. DOI: 10.1039/B822442K.
[19] Stroock A D, Dertinger S K W, Ajdari A, et al. Chaotic mixer for microchannels[J]. Science, 2002, 295(5555): 647-651. DOI: 10.1126/science.1066238.
[20] Stoecklein D, Wu C Y, Kim D, et al. Optimization of micropillar sequences for fluid flow sculpting[J].Physics of Fluids, 2016, 28(1): 012003.
[21] Amini H, Sollier E, Masaeli M, et al. Engineering fluid flow using sequenced microstructures[J]. Nature Communications, 2013, 4: 1826. DOI: 10.1038/ncomms2841.
[22] Paulsen K S, Chung A J. Non-spherical particle generation from 4D optofluidic fabrication[J].Lab on a Chip, 2016, 16(16): 2987-2995. DOI: 10.1039/C6LC00208K.
[23] Hou H W, Warkiani M E, Khoo B L, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces[J]. Scientific Reports, 2013, 3: 1259. DOI: 10.1038/srep01259.
[24] Zhu Z X, Wu D, Li S, et al. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation[J].Analytica Chimica Acta, 2021, 1143: 306-314. DOI: 10.1016/j.aca.2020.11.001.
[25] Di Carlo D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels[J].Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48): 18892-18897. DOI: 10.1073/pnas.0704958104.
[26] Zhang Y, Zhang J, Tang F, et al. Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing[J]. Analytical Chemistry, 2018, 90(3): 1786-1794. DOI: 10.1021/acs.analchem.7b03756.
[27] Zhang J, Li W H, Li M, et al. Particle inertial focusing and its mechanism in a serpentine microchannel[J].Microfluidics and Nanofluidics, 2014, 17(2): 305-316. DOI: 10.1007/s10404-013-1306-6.
[28] Geng Z X, Ju Y R, Wang W, et al. Continuous blood separation utilizing spiral filtration microchannel with gradually varied width and micro-pillar array[J]. Sensors and Actuators B: Chemical, 2013, 180: 122-129. DOI: 10.1016/j.snb.2012.06.064.
[29] Shen S F, Tian C, Li T B, et al. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation[J].Lab on a Chip, 2017, 17(21): 3578-3591. DOI: 10.1039/C7LC00691H.
[30] Shen S F, Zhang F J, Wang S T, et al. Ultra-low aspect ratio spiral microchannel with ordered micro-bars for flow-rate insensitive blood plasma extraction[J].Sensors and Actuators B: Chemical, 2019, 287: 320-328. DOI: 10.1016/j.snb.2019.02.066.
[31] Warkiani M E, Guan G F, Luan K B, et al. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells[J]. Lab on a Chip, 2014, 14(1): 128-137. DOI: 10.1039/C3LC50617G.
[32] Kim J, Lee J, Wu C, et al. Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions[J].Lab on a Chip, 2016, 16(6): 992-1001. DOI: 10.1039/C5LC01100K.
[33] Chen Z Z, Zhao L, Wei L J, et al. River meander-inspired cross-section in 3D-printed helical microchannels for inertial focusing and enrichment[J]. Sensors and Actuators B: Chemical, 2019, 301: 127125. DOI: 10.1016/j.snb.2019.127125.
[34] Mehran A, Rostami P, Saidi M S, et al. High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with U-shaped cross-section[J]. Biosensors, 2021, 11(11): 406. DOI: 10.3390/bios11110406.
[35] Rafeie M, Hosseinzadeh S, Taylor R A, et al. New insights into the physics of inertial microfluidics in curved microchannels. Ⅰ. Relaxing the fixed inflection point assumption[J]. Biomicrofluidics, 2019, 13(3): 034117. DOI: 10.1063/1.5109004.
[36] Zhang J, Yan S, Li W H, et al. High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device[J].RSC Advances, 2014, 4(63): 33149-33159. DOI: 10.1039/C4RA06513A.
[37] Xiang N, Ni Z H. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices[J].Biomedical Microdevices, 2015, 17(6): 110. DOI: 10.1007/s10544-015-0018-y.
[38] Mach A J, Di Carlo D. Continuous scalable blood filtration device using inertial microfluidics[J].Biotechnology and Bioengineering, 2010, 107(2): 302-311. DOI: 10.1002/bit.22833.
[39] Robinson M, Marks H, Hinsdale T, et al. Rapid isolation of blood plasma using a cascaded inertial microfluidic device[J].Biomicrofluidics, 2017, 11(2): 024109. DOI: 10.1063/1.4979198.
[40] Han J Y, DeVoe D L. Plasma isolation in a syringe by conformal integration of inertial microfluidics[J]. Annals of Biomedical Engineering, 2021, 49(1): 139-148. DOI: 10.1007/s10439-020-02526-9.
[41] Di Carlo D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21): 3038-3046.
[42] Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 2009, 9(20): 2973-2980. DOI: 10.1039/B908271A.[LinkOut]
[43] Han S, Zhang X J, Gu Q, et al. Inertial focusing effect of particles in spiral microchannel with asymmetric cross-section[J]. Optics and Precision Engineering, 2022, 30(3): 310-319. DOI:10.37188/OPE.20223003.0310. (in Chinese)

Memo

Memo:
Biography: Zhang Xinjie(1984—), male, doctor, associate professor, xj.zhang@hhu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51905150), Fundamental Research Funds for the Central Universities(No.B220202024), Changzhou Science and Technology Bureau Program(No.CE20225046), Changzhou Health Commission Youth Science and Technology Projects(No.QN202115), Jiangsu Planned Projects for Postdoctoral Research Funds(No.2019K033), Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX23_0670).
Citation: Zhang Xinjie, Zhu Hangjie, Liu Yao, et al. Stepped spiral microchannels for rapid blood plasma separation[J].Journal of Southeast University(English Edition), 2023, 39(2):176-186.DOI:10.3969/j.issn.1003-7985.2023.02.009.
Last Update: 2023-06-20