[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896.
[2] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. DOI: 10.1126/science.1157996.
[3] Galashev A Y, Vorob’ev A S. An ab initio study of the interaction of graphene and silicene with one-, two-, and three-layer planar silicon carbide[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138: 115120. DOI: 10.1016/j.physe.2021.115120.
[4] Yan J W, Zhu J H, Li C, et al. Decoupling the effects of material thickness and size scale on the transverse free vibration of BNNTs based on beam models[J]. Mech Syst Signal Pr, 2022, 166:108440. DOI: 10.1016/j.ymssp.2021.108440.
[5] Yan J W, Zhang W, Lai S K, et al. Large amplitude vibration and bistable jump of functionally graded graphene-platelet reinforced porous composite plates[J/OL]. Waves in Random and Complex Media.(2022-11-12)[2023-04-08]. https://doi.org/10.1080/17455030.2022.2141915.
[6] Wu J W, Tao Y, Chen C, et al. Molecular dynamics simulations of strain-dependent thermal conductivity of single-layer black phosphorus[J]. Journal of Southeast University(English Edition), 2018, 34(1): 43-47. DOI: 10.3969/j.issn.1003-7985.2018.01.007.
[7] Chen C, Chen Y F, Sha J J, et al. Molecular dynamics simulation of ion transportation through graphene nanochannels[J]. Journal of Southeast University(English Edition), 2017, 33(2): 171-176. DOI: 10.3969/j.issn.1003-7985.2017.02.008.
[8] Yan J W, Zhang W. An atomistic-continuum multiscale approach to determine the exact thickness and bending rigidity of monolayer graphene[J]. Journal of Sound and Vibration, 2021, 514: 116464. DOI: 10.1016/j.jsv.2021.116464.
[9] Deng S, Li L, Li M. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 101: 44-49. DOI: 10.1016/j.physe.2018.03.016.
[10] Song Z, Schultz T, Ding Z, et al. Electronic properties of a 1D intrinsic/p-doped heterojunction in a 2D transition metal dichalcogenide semiconductor[J]. ACS Nano, 2017, 11(9): 9128-9135. DOI: 10.1021/acsnano.7b03953.
[11] Wierzbowski J, Klein J, Sigger F, et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit[J]. Scientific Reports, 2017, 7: 12383. DOI: 10.1038/s41598-017-09739-4.
[12] Najam F, Tan M L P, Ismail1 R, et al. Two-dimensional(2D)transition metal dichalcogenide semiconductor field-effect transistors: The interface trap density extraction and compact model[J]. Semiconductor Science and Technology, 2015, 30: 075010. DOI: 10.1088/0268-1242/30/7/075010.
[13] Salih E, Ayesh A I. First principle study of transition metals codoped MoS2 as a gas sensor for the detection of NO and NO2 gases[J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 131: 114736. DOI: 10.1016/j.physe.2021.114736.
[14] Xiong Q L, Kitamura T, Li Z H. Crystal orientation-dependent mechanical property and structural phase transition of monolayer molybdenum disulfide[J]. Journal of Applied Physics, 2017, 122: 135105. DOI: 10.1063/1.4996941.
[15] Yasaei P, Foss C J, Karis K, et al. Interfacial thermal transport in monolayer MoS2- and graphene-based devices[J]. Advanced Materials Interfaces, 2017, 4(17): 1700334. DOI: 10.1002/admi.201700334.
[16] Nguyen C V, Hieu N N, Poklonski N A, et al. Magneto-optical transport properties of monolayer MoS2 on polar substrates[J]. Physical Review B, 2017, 96(12): 125411. DOI: 10.1103/PhysRevB.96.125411.
[17] Zhang Y Q, Wang L F, Jiang J N. Thermal vibration of MoS2/black phosphorus bi-layered heterostructure[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113597. DOI: 10.1016/j.physe.2019.113597.
[18] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. DOI: 10.1126/science.aac9439.
[19] Lu A Y, Zhu H Y, Xiao J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12: 744-749. DOI: 10.1038/nnano.2017.100.
[20] Zhang J, Jia S, Kholmanov I, et al. Janus monolayer transition-metal dichalcogenides[J]. ACS Nano, 2017, 11(8): 8192-8198. DOI: 10.1021/acsnano.7b03186.
[21] Idrews M, Din H U, Ali R, et al. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures[J]. Physical Chemistry Chemical Physics, 2019, 21: 18612-18621. DOI: 10.1039/c9cp02648g.
[22] Dong L, Lou J, Shenoy V B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides[J]. ACS Nano, 2017, 11(8): 8242-8248. DOI: 10.1021/acsnano.7b03313.
[23] Kandemir A, Peeters F M, Sahin H. Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via vibrational spectrum[J].The Journal of Chemical Physics, 2018, 149: 084707. DOI: 10.1063/1.5043207.
[24] Pham K D, Hieu N N, Phuc H V, et al. First principles study of the electronic properties and schottky barrier in vertically stacked graphene on the Janus MoSeS under electric field[J]. Computational Materials Science, 2018, 153: 438-444. DOI: 10.1016/j.commatsci.2018.07.017.
[25] Jiang S W, Shi S, Wang X F. Nanomechanics and vibration analysis of graphene sheets via a 2D plate model[J]. J Phys D: Appl Phys, 2014, 47(4): 045104. DOI: 10.1088/0022-3727/47/4/045104.
[26] AkgF6;z B, Civalek D6;. Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory[J]. Materials & Design, 2012, 42: 164-171. DOI: 10.1016/j.matdes.2012.06.002.
[27] Kitipornchai S, He X Q, Liew K M. Continuum model for the vibration of multilayered graphene sheets[J]. Phys Rev B, 2005, 72: 075443. DOI: 10.1103/PhysRevB.72.075443.
[28] Zhang Z Y, Lan L, Wang Y F, et al. Vibration frequency analysis of rippled single-layered graphene sheet: Toward the nano resonant devices design[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113580. DOI: 10.1016/j.physe.2019.113580.
[29] Zhang Y Q, Wang L F, Jiang J N. Thermal vibration of rectangular single-layered black phosphorus predicted by orthotropic plate model[J]. Journal of Applied Physics, 2018, 123: 095101. DOI: 10.1063/1.5016374.
[30] Yi J P, Wang L F, Zhang Y Q. Vibration of two-dimensional hexagonal boron nitride[J]. Theoretical and Applied Mechanics Letters, 2018, 8(6): 408-414. DOI: 10.1016/j.taml.2018.06.003.
[31] Zhang Y Q, Wang L F. Thermal vibration of circular single-layered MoS2 predicted by the circular Mindlin plate model[J]. AIP Advances, 2021, 11(2): 025328. DOI: 10.1063/5.0038066.
[32] Jiang J W. Misfit strain induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study[J]. Acta Mech Solida Sinica, 2019, 32: 17-28. DOI: 10.1007/s10338-018-0049-z.
[33] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1-19. DOI: 10.1006/jcph.1995.1039.
[34] Peelaers H, van de Walle C G. Elastic constants and pressure-induced effects in MoS2[J]. The Journal of Physical Chemistry C, 2014, 118(22): 12073-12076. DOI: 10.1021/jp503683h.
[35] Kandemir1 A, Yapicioglu H, Kinaci A, et al. Thermal transport properties of MoS2 and MoSe2 monolayers[J]. Nanotechnology, 2016, 27(5): 055703. DOI: 10.1088/0957-4484/27/5/055703.
[36] Vora A M. Effect of indium intercalation on various properties of MoSe2 single crystals[J]. Cryst Res Technol, 2007, 42(3): 286-289. DOI: 10.1002/crat.200610814.
[37] Hashemi Z, Rafiezadeh S, Hafizi R, et al. First-principles study of MoS2 and MoSe2 nanoclusters in the framework of evolutionary algorithm and density functional theory[J]. Chemical Physics Letters, 2018, 698: 41-50. DOI: 10.1016/j.cplett.2018.03.008.
[38] Xiong Q L, Zhou J, Zhang J, et al. Spontaneous curling of freestanding Janus monolayer transition-metal dichalcogenides[J]. Phys Chem Chem Phys, 2018, 20(32): 20988-20995. DOI: 10.1039/C8CP02011F.
[39] Ye H, Zhang Y Z, Wei A R, et al. Intrinsic-strain-induced curling of free-standing two-dimensional Janus MoSSe quantum dots[J]. Applied Surface Science, 2020, 519: 146251. DOI: 10.1016/j.apsusc.2020.146251.