|Table of Contents|

[1] Wang Tao, Fan Xiangqian, Gao Changsheng, et al. Database-based error analysis of calculation methods for shearcapacity of FRP-reinforced concrete beams without web reinforcement [J]. Journal of Southeast University (English Edition), 2023, 39 (3): 301-313. [doi:10.3969/j.issn.1003-7985.2023.03.011]
Copy

Database-based error analysis of calculation methods for shearcapacity of FRP-reinforced concrete beams without web reinforcement()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
39
Issue:
2023 3
Page:
301-313
Research Field:
Civil Engineering
Publishing date:
2023-09-20

Info

Title:
Database-based error analysis of calculation methods for shearcapacity of FRP-reinforced concrete beams without web reinforcement
Author(s):
Wang Tao1 Fan Xiangqian1 2 Gao Changsheng1 Qu Chiyu1 Liu Jueding1
1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, China
2Cooperative Innovation Center for Water Safety and Hydro Science, Hohai University, Nanjing 210098, China
Keywords:
database fiber-reinforced polymer(FRP)bars concrete beams without web reinforcement shearing capacity calculation method error analysis
PACS:
TU375.1
DOI:
10.3969/j.issn.1003-7985.2023.03.011
Abstract:
A comprehensive database consisting of 461 samples was established considering the shear capacity experimental data from the literature. The effects of six factors, namely the concrete compressive strength, beam width, effective depth, shear span-to-depth ratio, reinforcement ratio, and elastic modulus of fiber-reinforced polymer bars, on shear capacity were analyzed. Furthermore, the prediction performance of each calculation method was evaluated. The results revealed inconsistencies among the calculation methods regarding the consideration of the size effect and the shear span-to-depth ratio, with varying degrees of conservatism in their predictions. Strong correlations existed between the factors and the shear capacity. Among the design provisions recommended by different countries, CSA/CAN-S806-2012 exhibited the most accurate prediction, while ACI440.1R-2015 demonstrated the highest level of conservatism, and CNR-DT203-2006 exhibited the lowest safety margin. Regarding the calculation models proposed by scholars, Ahmed-2021 reported the most accurate prediction, Alam-2013 was the most conservative, and Mari-2014 exhibited the lowest safety level.

References:

[1] Naderpour H, Haji M, Mirrashid M. Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence[J].Structures, 2020, 28: 321-328. DOI: 10.1016/j.istruc.2020.08.076.
[2] Yu Q Q, Gu X L, Zeng Y H, et al. Flexural behavior of corrosion-damaged prestressed concrete beams[J].Engineering Structures, 2022, 272: 114985. DOI: 10.1016/j.engstruct.2022.114985.
[3] Zhang L, Zheng Y, Yu Y, et al. Structural performance evaluation of ECC link slabs reinforced with FRP bars for jointless bridge decks[J].Construction and Building Materials, 2021, 304: 124462. DOI: 10.1016/j.conbuildmat.2021.124462.
[4] Liu X, Sun Y, Wu T, et al. Flexural cracks in steel fiber-reinforced lightweight aggregate concrete beams reinforced with FRP bars[J].Composite Structures, 2020, 253: 112752. DOI: 10.1016/j.compstruct.2020.112752.
[5] Jin L, Lei Y, Yu W, et al. Dynamic shear failure and size effect in BFRP-reinforced concrete deep beam[J].Engineering Structures, 2021, 245: 112951. DOI: 10.1016/j.engstruct.2021.112951.
[6] Zheng Y, Yu T, Yang J, et al. Investigation of the behaviour of reinforcement-free concrete deck slabs restrained by FRP rods[J].Engineering Structures, 2017, 135: 191-208. DOI: 10.1016/j.engstruct.2017.01.005.
[7] Tan H, Hou Z, Li Y, et al. A flexural ductility model for UHPC beams reinforced with FRP bars[J].Structures, 2022, 45: 773-786. DOI: 10.1016/j.istruc.2022.09.052.
[8] Feng G, Zhu D, Guo S, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J].Cement and Concrete Composites, 2022, 134: 104758. DOI: 10.1016/j.cemconcomp.2022.104758.
[9] Guo X, Xiong C, Jin Z, et al. A review on mechanical properties of FRP bars subjected to seawater sea sand concrete environmental effects[J].Journal of Building Engineering, 2022, 58: 105038. DOI: 10.1016/j.jobe.2022.105038.
[10] Hoang A L, Duc A L, Thanh T L, et al. An extreme gradient boosting approach to estimate the shear strength of FRP reinforced concrete beams[J].Structures, 2022, 45: 1307-1321. DOI: 10.1016/j.istruc.2022.09.112.
[11] Truong G T, Choi K K, Kim C S. Punching shear strength of interior concrete slab-column connections reinforced with FRP flexural and shear reinforcement[J].Journal of Building Engineering, 2022, 46: 103692. DOI: 10.1016/j.jobe.2021.103692.
[12] Jin L, Wang T, Jiang X, et al. Size effect in shear failure of RC beams with stirrups: Simulation and formulation[J].Engineering Structures, 2019, 199: 109573. DOI: 10.1016/j.engstruct.2019.109573.
[13] American Concrete Institute. Commentary on building code requirements for structural concrete: ACI 318R-14[S]. Farmington Hill, MI, USA: American Concrete Institute, 2019.
[14] Dong W, Wu Z, Zhou X, et al. Experimental study of equal biaxial-to-uniaxial compressive strength ratio of concrete at early ages[J].Construction and Building Materials, 2016, 126: 263-273. DOI: 10.1016/j.conbuildmat.2016.09.040.
[15] Wang W, Mo Z, Chouw N, et al. Impact resistance of flax FRP fully wrapped coconut fibre reinforced concrete beams and shear contribution of FRP[J].Construction and Building Materials, 2023, 392: 131922. DOI: 10.1016/j.conbuildmat.2023.131922.
[16] Tran N L. A mechanical model for the shear capacity of slender reinforced concrete members without shear reinforcement[J].Engineering Structures, 2020, 219: 110803. DOI: 10.1016/j.engstruct.2020.110803.
[17] Dong W, Wu Z, Tang X, et al. A comparative study on stress intensity factor-based criteria for the prediction of mixed mode Ⅰ-Ⅱ crack propagation in concrete[J].Engineering Fracture Mechanics, 2018, 197: 217-235. DOI: 10.1016/j.engfracmech.2018.05.009.
[18] Rahman J, Arafin P, Muntasir Billah A H M. Machine learning models for predicting concrete beams shear strength externally bonded with FRP[J]. Structures, 2023, 53: 514-536. DOI: 10.1016/j.istruc.2023.04.069.
[19] Marani A, Nehdi M L. Predicting shear strength of FRP-reinforced concrete beams using novel synthetic data driven deep learning[J].Engineering Structures, 2022, 257: 114083. DOI: 10.1016/j.engstruct.2022.114083.
[20] Oller E, Marí A, Bairán J M, et al. Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement[J].Composites Part B: Engineering, 2015, 74: 104-122. DOI: 10.1016/j.compositesb.2014.12.031.
[21] Fan X H, Qin W H, Xie P, et al. Shear force capacity of steel-glass fiber composite bar reinforced concrete beams under concentrated load[J].Journal of Southeast University(Natural Science Edition), 2020, 50(4): 623-629. DOI:10.3969/j.issn.1001-0505.2020.04.004. (in Chinese)
[22] Borzovi V, Gajdo�9A;ová K, Halvonik J, et al. Partial factor for the shear resistance model in the 2nd generation of Eurocode 2 for GFRP reinforced concrete members[J].Engineering Structures, 2023, 285: 116005. DOI: 10.1016/j.engstruct.2023.116005.
[23] Mukhtar F, Deifalla A. Shear strength of FRP reinforced deep concrete beams without stirrups: Test database and a critical shear crack-based model[J].Composite Structures, 2023, 307: 116636. DOI: 10.1016/j.compstruct.2022.116636.
[24] Alam M S, Sultana N, Hossain S M Z. Bayesian optimization algorithm based support vector regression analysis for estimation of shear capacity of FRP reinforced concrete members[J].Applied Soft Computing, 2021, 105: 107281. DOI: 10.1016/j.asoc.2021.107281.
[25] Jumaa G B, Yousif A R. Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis[J].Advances in Civil Engineering, 2018: 5157824. DOI: 10.1155/2018/5157824.
[26] Luo M, Hu S X, Pan J L. Analysis on shear capacity of ECC deep beams based on strut-and-tie model[J].Journal of Southeast University(Natural Science Edition), 2021, 51(4): 551-558. DOI:10.3969/j.issn.1001-0505.2021.04.001. (in Chinese)
[27] Rahman J, Ahmed K S, Khan N I, et al. Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach[J].Engineering Structures, 2021, 233: 111743. DOI: 10.1016/j.engstruct.2020.111743.
[28] Peng F, Xue W, Xue W. Database evaluation of shear strength of slender fiber-reinforced polymer-reinforced concrete members[J].ACI Structural Journal, 2020, 117(3): 273-282. DOI: 10.14359/51723504.
[29] Elghandour B, Eltahawy R, Shedid M, et al. Prediction of shear strength for CFRP reinforced concrete beams without stirrups[J].Engineering Structures, 2023, 284: 115946. DOI: 10.1016/j.engstruct.2023.115946.
[30] Nadir W, Kadhimi M M A, Jawdhari A, et al. RC beams strengthened in shear with FRP-reinforced UHPC overlay: An experimental and numerical study[J].Structures, 2023, 53: 693-715. DOI: 10.1016/j.istruc.2023.04.117.
[31] Gao D, Zhang C. A model for shear strength of FRP bar reinforced concrete beams without stirrups[J].Advances in Civil Engineering, 2020, 2022: 8881463. DOI: 10.1155/2020/8881463.
[32] Gao D, Zhang C. Shear strength calculating model of FRP bar reinforced concrete beams without stirrups[J].Engineering Structures, 2020, 221: 111025. DOI: 10.1016/j.engstruct.2020.111025.
[33] Shahnewaz M, Machial R, Alam M S, et al. Optimized shear design equation for slender concrete beams reinforced with FRP bars and stirrups using genetic algorithm and reliability analysis[J].Engineering Structures, 2016, 107: 151-165. DOI: 10.1016/j.engstruct.2015.10.049.
[34] Ashour A. Flexural and shear capacities of concrete beams reinforced with GFRP bars[J].Construction and Building Materials, 2006, 20: 1005-1015. DOI: 10.1016/j.conbuildmat.2005.06.023.
[35] Canadian Standards Association. Design and construction of building structures with fibre-reinforced polymers: CSA/CAN-S806-2012[S]. Mississauga, Canada: Canadian Standards Association, 2012.
[36] Jumaa G B, Yousif A R. Numerical modeling of size effect in shear strength of FRP-reinforced concrete beams[J].Structures, 2019, 20: 237-254. DOI: 10.1016/j.istruc.2019.04.008.
[37] Issa M A, Ovitigala T, Ibrahim M. Shear behavior of basalt fiber reinforced concrete beams with and without basalt FRP stirrups[J].Journal of Composites for Construction, 2016, 20(4): 04015083. DOI: 10.1061/(ASCE)CC.1943-5614.0000638.
[38] Thomas J, Ramadass S. Parametric study of shear strength of concrete beams reinforced with FRP bars[J].Journal of The Institution of Engineers(India): Series A, 2016, 97: 682022. DOI: 10.1007/s40030-016-0161-3.
[39] El Refai A, Abed F. Concrete contribution to shear strength of beams reinforced with basalt fiber-reinforced bars[J].Journal of Composites for Construction, 2015, 20(4): 04015082. DOI: 10.1061/(ASCE)CC.1943-5614.0000648.
[40] Abdulsalam B, Farghaly A, Benmokrane B. Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars[J].Construction and Building Materials, 2016, 127: 959-970. DOI: 10.1016/j.conbuildmat.2016.10.015.
[41] Gopinath S, Meenu S, Murthy R. Shear strength evaluation of concrete beams reinforced with BFRP bars and steel fibers without stirrups[J].Computers, Materials and Continua, 2016, 51(2): 81-103. DOI: 0.3970/cmc.2016.051.081.
[42] Acciai A, D’Ambrisi A, Stefano M, et al. Experimental response of FRP reinforced members without transverse reinforcement: Failure modes and design issues[J].Composites Part B: Engineering, 2016, 89(16): 1-20. DOI: 10.1016/j.compositesb.2016.01.002.
[43] Tomlinson D, Fam A. Performance of concrete beams reinforced with basalt FRP for flexure and shear[J].Journal of Composites for Construction, 2014, 19(2): 04014036. DOI: 10.1061/(ASCE)CC.1943-5614.0000491.
[44] Liu H, Liu G, Wang X, et al. Shear capacity of basalt fiber reinforced polymer reinforced recycled concrete deep beam without web reinforcement[J].Journal of Sichuan University, 2015, 47(5): 17-22. DOI:10.15961/j.jsuese.2015.05.003. (in Chinese)
[45] Kim C, Jang H. Concrete shear strength of normal and lightweight concrete beams reinforced with FRP bars[J].Journal of Composites for Construction, 2014, 18: 04013038. DOI: 10.1061/(asce)cc.1943-5614.0000440.
[46] Ashour A, Kara I. Size effect on shear strength of FRP reinforced concrete beams[J].Composites Part B: Engineering, 2014, 60: 612-620. DOI: 10.1016/j.compositesb.2013.12.002.
[47] Imohamed A, Rendy T, Abdul Samad A A, et al. Diagonal shear cracks and size effect in concrete beams reinforced with glass fiber reinforced polymer(GFRP)bars[J].Applied Mechanics and Materials, 2014, 621: 113-119. DOI: 10.4028/www.scientific.net/AMM.621.113.
[48] Johnson D.Investigation of glass fibre reinforced polymer(GFRP)bars as Internal reinforcement for concrete structures[D]. Toronto, Canada: University of Toronto, 2014.
[49] Ali I, Abdul Samad A A, Miranda S, et al. Evaluation of shear strength of concrete beams with GFRP reinforcement[J].Applied Mechanics and Materials, 2014, 26(508): 603-612. DOI: 10.4028/www.scientific.net/AMM.660.603.
[50] Andermatt M, Lubell A. Behavior of concrete deep beams reinforced with internal fiber-reinforced polymer-experimental study[J].ACI Structural Journal, 2013, 110(4): 585-594.
[51] Choi I C, Jung D J. Shear behavior of concrete beams reinforced with FRP bar[J].Journal of the Korean Society of Marine Environment and Safety, 2013, 19(4): 403-409. DOI: 10.7837/kosomes.2013.19.4.403.
[52] Matta F, El-Sayed A, Nanni A, et al. Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars[J].ACI Structural Journal, 2013, 110(4): 617-628.
[53] Farghaly A, Benmokrane B. Shear behavior of FRP-reinforced concrete deep beams without web reinforcement[J].Journal of Composites for Construction, 2013, 17: 04013015. DOI: 10.1061/(ASCE)CC.1943-5614.0000385.
[54] Alam M, Hussein A. Size effect on shear strength of FRP reinforced concrete beams without stirrups[J].Journal of Composites for Construction, 2013, 17: 507-516. DOI: 10.1061/(ASCE)CC.1943-5614.0000346.
[55] Khaja M, Sherwood E. Does the shear strength of reinforced concrete beams and slabs depend upon the flexural reinforcement ratio or the reinforcement strain[J].Canadian Journal of Civil Engineering, 2013, 40: 1068-1081. DOI: 10.1139/cjce-2012-0459.
[56] Abed F, El-Chabib H, Al Hamaydeh M. Shear characteristics of GFRP-reinforced concrete deep beams without web reinforcement[J].Journal of Reinforced Plastics and Composites, 2012, 31: 1063-1073. DOI: 10.1177/0731684412450350.
[57] Chang K, Seo D. Behavior of one-way concrete slabs reinforced with GFRP bars[J].Journal of Asian Architecture and Building Engineering, 2012, 11: 351-358. DOI: 10.3130/jaabe.11.351.
[58] Ovitigala T.Structural behavior of concrete beams reinforced with basalt fiber reinforced polymer(BFRP)bars[D]. Chicago, IL, USA: University of Illinois at Chicago, 2012.
[59] Liu R.Precast concrete bridge deck panels reinforced with glass fiber reinforced polymer bars[D]. Salt Lake City, NT, USA: The University of Utah, 2011.
[60] Zeidan M, Barakat M, Mahmoud Z, et al. Evaluation of concrete shear strength for FRP reinforced beams[J].Structures Congress, 2011, 401: 1816-1826. DOI: 10.1061/41171(401)158.
[61] Bentz E, Massam L, Collins M. Shear strength of large concrete members with FRP reinforcement[J].Journal of Composites for Construction, 2010, 14(6): 637-646. DOI: 10.1061/(ASCE)CC.1943-5614.0000108.
[62] Olivito R S, Zuccarello F A. On the shear behaviour of concrete beams reinforced by carbon fibre-reinforced polymer bars: An experimental investigation by means of acoustic emission technique[J].Strain, 2010, 46: 470-481. DOI: 10.1111/j.1475-1305.2009.00699.x.
[63] Lee J H, Son H A, Shin S J. Failure behavior of FRP RC beams without shear reinforcements[J].Journal of the Korea Concrete Institute, 2010, 22(2): 199-208. DOI: 10.4334/JKCI.2010.22.2.199.
[64] Alam M, Hussein A. Relationship between the shear capacity and the flexural cracking load of FRP reinforced concrete beams[J].Construction and Building Materials, 2017, 154: 819-828. DOI: 10.1016/j.conbuildmat.2017.08.006.
[65] Zhang X, Qu W. Shear behavior test of GFRP-reinforced concrete beams without stirrups[J].China Journal of Highway and Transport, 2010, 23(5): 51-57. DOI:10.19721/j.cnki.1001-7372.2010.05.008. (in Chinese)
[66] Nehdi M, El-Chabib H, Omeman Z. Experimental study on shear behavior of carbon-fiber-reinforced polymer reinforced concrete short beams without web reinforcement[J].Canadian Journal of Civil Engineering, 2008, 35: 1-10. DOI: 10.1139/L07-080.
[67] El-Sayed A, El-Salakawy E, Benmokrane B. Shear strength of FRP-reinforced concrete beams without transverse reinforcement[J]. ACI Structural Journal, 2006, 103: 235-243.
[68] El-Sayed A, El-Salakawy E, Benmokrane B. Shear capacity of high-strength concrete beams reinforced with FRP bars[J].ACI Structural Journal, 2006, 103(3): 383-389.
[69] Guadagnini M, Pilakoutas K, Waldron P. Shear resistance of FRP RC beams: Experimental study[J].Journal of Composites for Construction, 2006, 10(06): 464-473. DOI: 10.1061/(ASCE)1090-0268(2006)10:6(464).
[70] Wegian F M, Abdalla H. Shear capacity of concrete beams reinforced with fiber reinforced polymers[J].Composite Structures, 2005, 71: 130-138. DOI: 10.1016/j.compstruct.2004.10.001.
[71] El-Sayed A, El-Salakawy E, Benmokrane B. Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars[J].Journal of Composites for Construction, 2005, 9(2): 147-157. DOI: 10.1061/(ASCE)1090-0268(2005)9:2(147).
[72] Kilpatrick A, Easden L. Shear capacity of GFRP reinforced high strength concrete slabs[C]// Australasian Conference on the Mechanics of Structures and Materials. London, UK, 2005: 119-124.
[73] Razaqpur G, Isgor B, Greenaway S, et al. Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members[J].Journal of Composites for Construction, 2004, 8(5): 452-460. DOI: 10.1061/(ASCE)1090-0268(2004)8:5(452).
[74] Tariq M, Newhook J. Shear testing of FRP reinforced concrete without transverse reinforcement[C]// Annual Conference of the Canadian Society for Civil Engineering. Moncton, Canada, 2003: 1330-1339.
[75] Tureyen K, Frosch R. Shear tests of FRP-reinforced concrete beams without stirrups[J].ACI Structural Journal, 2002, 44(99): 427-434.
[76] Yost J, Gross S, Dinehart D. Shear strength of normal strength concrete beams reinforced with deformed GFRP bars[J].Journal of Composites for Construction, 2001, 5(4): 268-275. DOI: 10.1061/(ASCE)1090-0268(2001)5:4(268).
[77] Gross S, Yost J, Dinehart D, et al. Shear strength of normal and high strength concrete beams reinforced with GFRP bars[C]//International Conference on High Performance Materials in Bridges. Kona, HI, USA, 2003: 426-437.
[78] Alkhrdaji T, Wideman M, Belarbi A, et al. Shear strength of GFRP RC beams and slabs[C]// Composites in Construction. Porto, Portugal, 2001: 409-414.
[79] Duranovic N, Pilakoutas K, Waldron P. Tests on concrete beams reinforced with glass fibre reinforced plastic bars[C]// Proceedings of the Third International Symposium on Non-metallic(FRP)Reinforcement for Concrete structures(FRPRCS-3). Sheffield, UK, 1997: 1-8.
[80] Hikaru N, Takeshi H. Evaluation of shear strength of concrete beams reinforced with FRP[J].Proceedings of the Japan Society of Civil Engineers, 1995, 26(508): 111-123.
[81] American Concrete Institute. Guide for the design and construction of concrete reinforced with fiber reinforced polymers(FRP bars): ACI 440.1R-2015[S]. Farmington Hills, MI, USA: American Concrete Institute, 2015.
[82] Razaqpur G, Isgor B. Proposed shear design method for FRP-reinforced concrete members without stirrups[J].ACI Structural Journal, 2006, 103(11): 93-102.
[83] Japan Society of Civil Engineers. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials: JSCE-1997[S]. Tokyo, Japan: Japan Society of Civil Engineers, 1997.
[84] AASHTO. Bridge design guide specifications for GFRP-reinforced concrete bridge decks and traffic railings: AASHTO-LRFD-2017[S]. Washington, DC, USA: AASHTO, 2017.
[85] Advisory Committee Technical Recommendations Construction. Guide for the design and structural of concrete reinforced with fiber-reinforced: CNR-DT203-2006[S]. Rome, Italy: Advisory Committee Technical Recommendations Construction, 2006.
[86] British Institution of Structural Engineers. Interim guidance on the design of reinforced concrete structures using fiber composite reinforcement: BISE-1999[S]. London, UK: British Institution of Structural Engineers, 1999.
[87] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for fiber reinforced polymer(FRP)in construction: GB 50608—2020[S]. Beijing, China: China Planing Press, 2020.(in Chinese)
[88] Ahmed A, Mohamed H, Chalioris C, et al. Evaluating the shear design equations of FRP-reinforced concrete beams without shear reinforcement[J].Engineering Structures, 2021, 235: 112017. DOI: 10.1016/j.engstruct.2021.112017.
[89] Baghi H, Barros J, Kaszubska M, et al. Shear behavior of concrete beams reinforced exclusively with longitudinal glass fiber reinforced polymer bars: Analytical model[J].Structural Concrete, 2018, 19: 162-173. DOI: 10.1002/suco.201700175.
[90] Frosch R J, Qiang Y, Cusatis G, et al. A unified approach to shear design[J]. Journal of Chemical & Engineering Data, 2017, 19: 162-173.
[91] Mari A, Cladera A, Oller E, et al. Shear design of FRP reinforced concrete beams without transverse reinforcement[J].Composites Part B Engineering, 2014, 57: 228-241. DOI: 10.1016/j.compositesb.2013.10.005.
[92] Alam M, Hussein A. Unified shear design method for FRP reinforced concrete members without stirrups[J]. Journal of Composites for Construction, 2013, 17(5): 575-587. DOI: 10.1061/(asce)cc.1943-5614.0000342.
[93] Kara I. Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming[J].Advances in Engineering Software, 2011, 42(06): 295-304. DOI: 10.1016/j.advengsoft.2011.02.002.

Memo

Memo:
Biographies: Wang Tao(1995—), male, Ph. D. candidate; Fan Xiangqian(corresponding author), male, doctor, professorate senior engineer, xqfan@nhri.cn.
Foundation items: The National Natural Science Foundation of China(No. 52171270, 51879168, 51679150), the Joint Fund for Water Science Research of the Yellow River(No. U2243223).
Citation: Wang Tao, Fan Xiangqian, Gao Changsheng, et al.Database-based error analysis of calculation methods for the shear capacity of FRP-reinforced concrete beams without web reinforcement[J].Journal of Southeast University(English Edition), 2023, 39(3):301-313.DOI:10.3969/j.issn.1003-7985.2023.03.011.
Last Update: 2023-09-20