[1] LeCun Y, Bengio Y, Hinton G. Deep learning[J].Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
[2] Ackerman E. How Drive.ai is mastering autonomous driving with deep learning [EB/OL].(2017-12)[2022-10-16]. https://spectrum.ieee.org/cars-that-think/transportation/self-driving/how-driveai-is-mastering-autonomous-driving-with-deep-learning.
[3] Class Central. Deep learning for self-driving cars [EB/OL].(2017)[2022-11-20]. https://www.class-central.com/mooc/8132/6-s094-deep-learning-for-self-driving-cars.
[4] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J].Nature, 2015, 518(7540): 529-533. DOI: 10.1038/nature14236.
[5] Giusti A, Guzzi J, Ciresan D C, et al. A machine learning approach to visual perception of forest trails for mobile robots[J].IEEE Robotics and Automation Letters, 2016, 1(2): 661-667. DOI: 10.1109/lra.2015.2509024.
[6] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[7] Chakraborty K, Bhattacharyya S, Bag R, et al. Comparative sentiment analysis on a set of movie reviews using deep learning approach[C]//International Conference on Advanced Machine Learning Technologies and Applications. Cham, Switzerland: Springer, 2018: 311-318. DOI: 10.1007/978-3-319-74690-6_31.
[8] Biggio B, Nelson B, Laskov P. Support vector machines under adversarial label noise[C]// Proceedings of the Asian Conference on Machine Learning. Taoyuan, China, 2011: 97-112.
[9] MuF1;oz-González L, Biggio B, Demontis A, et al. Towards poisoning of deep learning algorithms with back-gradient optimization[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. Dallas, TX, USA, 2017: 27-38. DOI: 10.1145/3128572.3140451.
[10] Liu H Q, Li D X, Li Y C. Poisonous label attack: Black-box data poisoning attack with enhanced conditional DCGAN[J].Neural Processing Letters, 2021, 53(6): 4117-4142. DOI: 10.1007/s11063-021-10584-w.
[11] Alberti M, Pondenkandath V, Wursch M, et al. Are you tampering with my data? [C]// The European Conference on Computer Vision. Munich, Germany, 2018: 296-312.
[12] Shafahi A, Huang W R, Najibi M, et al. Poison frogs! Targeted clean-label poisoning attacks on neural networks[C]// Neural Information Processing Systems 31(NIPS). Montréal, Canada, 2018: 6106-6116.
[13] Jagielski M, Oprea A, Biggio B, et al. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning[C]//2018 IEEE Symposium on Security and Privacy(SP). San Francisco, CA, USA, 2018: 19-35. DOI: 10.1109/SP.2018.00057.
[14] Zhang X Z, Zhu X J, Wright S. Training set debugging using trusted items[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, LA, USA, 2018: 1-8. DOI: 10.1609/aaai.v32i1.11610.
[15] Peri N, Gupta N, Huang W R, et al. Deep k-NN defense against clean-label data poisoning attacks [EB/OL].(2019)[2022-12-22]. http://arxiv.org/abs/1909.13374.
[16] Shen S Q, Tople S, Saxena P. Auror: Defending against poisoning attacks in collaborative deep learning systems[C]//Proceedings of the 32nd Annual Conference on Computer Security Applications. Los Angeles, CA, USA, 2016: 508-519. DOI: 10.1145/2991079.2991125.
[17] Liu K, Dolan-Gavitt B, Garg S. Fine-pruning: Defending against backdooring attacks on deep neural networks[C]//International Symposium on Research in Attacks, Intrusions, and Defenses. Heraklion, Crete, Greece, 2018: 273-294. DOI: 10.1007/978-3-030-00470-5_13.
[18] Diakonikolas I, Kamath G, Kane D. Sever: A robust meta-algorithm for stochastic optimization[C]// International Conference on Machine Learning. Long Beach, California, USA, 2019: 1596-1606.
[19] Chen J, Zhang X X, Zhang R, et al. De-Pois: An attack-agnostic defense against data poisoning attacks[J].IEEE Transactions on Information Forensics and Security, 2021, 16: 3412-3425. DOI: 10.1109/TIFS.2021.3080522.
[20] Krawczyk H. HMQV: A high-performance secure Diffie-Hellman protocol[C]// 25th Annual International Crytology Conference. Santa Barbara, CA, USA, 2005: 1-62.
[21] Bao F, Deng R H, Zhu H F. Variations of Diffie-Hellman problem[C]// Proceeding of the International Conference on Information and Communications Security. Hohhot, China, 2003: 301-312.
[22] Roth R M, Lempel A. On MDS codes via cauchy matrices[J].IEEE Transactions on Information Theory, 1989, 35(6): 1314-1319. DOI: 10.1109/18.45291.