[1] Kane M, Lim M, Do T M, et al. A new predictive skid resistance model(PSRM)for pavement evolution due to texture polishing by traffic [J]. Construction and Building Materials, 2022, 342: 128052. DOI: 10.1016/j.conbuildmat.2022.128052.
[2] Ueckermann A, Wang D, Oeser M, et al. Calculation of skid resistance from texture measurements [J]. Journal of Traffic and Transportation Engineering(English Edition), 2015, 2(1): 3-16. DOI: 10.1016/j.jtte.2015.01.001.
[3] Fwa T F. Skid resistance determination for pavement management and wet-weather road safety [J]. International Journal of Transportation Science and Technology, 2017, 6(3): 217-227. DOI: 10.1016/j.ijtst.2017.08.001.
[4] Zheng B, Zhu S, Cheng Y, et al. Analysis on influence factors of adhesion characteristic of tire-asphalt pavement based on tire hydroplaning model[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(4): 719-725. DOI:10.3969/j.issn.1001-0505.2018.04.019. (in Chinese)
[5] Grande Z, Castillo E, Mora E, et al. Highway and road probabilistic safety assessment based on Bayesian network models [J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 379-396. DOI: 10.1111/mice.12248.
[6] Liu C, Du Y, Wong S, et al. Eco-based pavement lifecycle maintenance scheduling optimization for equilibrated networks [J]. Transportation Research Part D: Transport and Environment, 2020, 86: 102471. DOI: 10.1016/j.trd.2020.102471.
[7] Lei J a, Zheng N, Chen X, et al. Research on the relationship between anti-skid performance and various aggregate micro texture based on laser scanning confocal microscope [J]. Construction and Building Materials, 2022, 316: 125984. DOI: 10.1016/j.conbuildmat.2021.125984.
[8] Zong Y, Li S, Zhang J, et al. Effect of aggregate type and polishing level on the long-term skid resistance of thin friction course [J]. Construction and Building Materials, 2021, 282: 122730. DOI: 10.1016/j.conbuildmat.2021.122730.
[9] Do M T, Tang Z, Kane M, et al. Evolution of road-surface skid-resistance and texture due to polishing [J]. Wear, 2009, 266(5): 574-577. DOI: 10.1016/j.wear.2008.04.060.
[10] Du Y, Qin B, Weng Z, et al. Promoting the pavement skid resistance estimation by extracting tire-contacted texture based on 3D surface data [J]. Construction and Building Materials, 2021, 307: 124729. DOI: 10.1016/j.conbuildmat.2021.124729.
[11] Takino H, Nakayama R, Yamada Y, et al. Viscoelastic properties of elastomers and tire wet skid resistance [J]. Rubber chemistry and technology, 1997, 70(4): 584-594. DOI: 10.5254/1.3538445.
[12] Copetti Callai S, Sangiorgi C. A review on acoustic and skid resistance solutions for road pavements [J]. Infrastructures, 2021, 6(3): 41. DOI: 10.3390/infrastructures6030041.
[13] Yun D, Tang C, Ran M, et al. Enveloping profile calculation method for enhancing the efficiency of pavement skid resistance prediction[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(1): 130-136. DOI:10.3969/j.issn.1001-0505.2023.01.016. (in Chinese)
[14] Nayak S R, Mishra J, Palai G. Analysing roughness of surface through fractal dimension: A review [J]. Image and Vision Computing, 2019, 89: 21-34. DOI: 10.1016/j.imavis.2019.06.015.
[15] Issa M A, Issa M A, Islam M S, et al. Fractal dimension: A measure of fracture roughness and toughness of concrete [J]. Engineering Fracture Mechanics, 2003, 70(1): 125-137. DOI: 10.1016/S0013-7944(02)00019-X.
[16] Kokkalis A, Tsohos G, Panagouli O. Consideration of fractals potential in pavement skid resistance evaluation [J]. Journal of Transportation Engineering, 2002, 128(6): 591-595. DOI: 10.1061/(ASCE)0733-947X(2002)128:6(591).
[17] Peng Y, Li Q, Zhan Y, et al. Pavement skid resistance evaluation based on 3D areal texture characterization[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(4): 667-676. DOI:10.3969/j.issn.1001-0505.2020.04.010. (in Chinese)
[18] Liu C, Zhan Y, Deng Q, et al. An improved differential box counting method to measure fractal dimensions for pavement surface skid resistance evaluation [J]. Measurement, 2021, 178: 109376. DOI: 10.1016/j.measurement.2021.109376.
[19] Chen Y, Wang K J, Zhou W F. Evaluation of surface textures and skid resistance of pervious concrete pavement [J]. Journal of Central South University, 2013, 20(2): 520-527. DOI: 10.1007/s11771-013-1514-y.
[20] Wang D, Chen X, Yin C, et al. Influence of different polishing conditions on the skid resistance development of asphalt surface [J]. Wear, 2013, 308(1/2): 71-78. DOI: 10.1016/j.wear.2013.09.013.
[21] Li P, Yi K, Yu H, et al. Effect of aggregate properties on long-term skid resistance of asphalt mixture [J]. Journal of Materials in Civil Engineering, 2021, 33(1): 04020413. DOI: 10.1061/(asce)mt.1943-5533.0003539.
[22] Qian Z, Hou Y, Dong Y, et al. An evaluation method for the polishing and abrasion resistance of aggregate [J]. Road Materials and Pavement Design, 2018, 21(5): 1374-1385. DOI: 10.1080/14680629.2018.1546219.
[23] Wang H, Wang C, Bu Y, et al. Correlate aggregate angularity characteristics to the skid resistance of asphalt pavement based on image analysis technology [J]. Construction and Building Materials, 2020, 242: 118150. DOI: 10.1016/j.conbuildmat.2020.118150.
[24] Woodward D, Millar P, Lantieri C, et al. The wear of stone mastic asphalt due to slow speed high stress simulated laboratory trafficking [J]. Construction and Building Materials, 2016, 110: 270-277. DOI: 10.1016/j.conbuildmat.2016.02.031.
[25] Yu H, Shen S, Qian G, et al. Packing theory and volumetrics-based aggregate gradation design method [J]. Journal of Materials in Civil Engineering, 2020, 32(6): 04020110. DOI: 10.1061/(asce)mt.1943-5533.0003192.
[26] Wang J, Kong Y, Fu T. Expressway crash risk prediction using back propagation neural network: A brief investigation on safety resilience [J]. Accid Anal Prev, 2019, 124: 180-192. DOI: 10.1016/j.aap.2019.01.007.
[27] Sollazzo G, Fwa T F, Bosurgi G. An ANN model to correlate roughness and structural performance in asphalt pavements [J]. Construction and Building Materials, 2017, 134: 684-693. DOI: 10.1016/j.conbuildmat.2016.12.186.
[28] Marcelino P, de Lurdes Antunes M, Fortunato E, et al. Machine learning approach for pavement performance prediction [J]. International Journal of Pavement Engineering, 2019, 22(3): 341-354. DOI: 10.1080/10298436.2019.1609673.
[29] Wang J, Luo T, Fu T. Crash prediction based on traffic platoon characteristics using floating car trajectory data and the machine learning approach [J]. Accid Anal Prev, 2019, 133: 105320. DOI: 10.1016/j.aap.2019.105320.
[30] Ye Z Y, Kim M K. Predicting electricity consumption in a building using an optimized back-propagation and Levenberg-Marquardt back-propagation neural network: Case study of a shopping mall in China [J]. Sustainable Cities and Society, 2018, 42: 176-183. DOI: 10.1016/j.scs.2018.05.050.
[31] Chen C, Zhang G, Qian Z, et al. Investigating driver injury severity patterns in rollover crashes using support vector machine models [J]. Accid Anal Prev, 2016, 90: 128-139. DOI: 10.1016/j.aap.2016.02.011.
[32] Scott W T, Stephen W W. Fractal scaling of soil particle-size distributions: Analysis and limitations [J]. Soil Science Society of America Journal, 1992, 56: 362-369. DOI: 10.2136/sssaj1992.03615995005600020005x.
[33] Zhang T, Zhang C, Luo T. Effect of stress anisotropy on deformation and particle breakage of silica sand at high-pressure compression tests [J]. Construction and Building Materials, 2022, 316: 125835. DOI: 10.1016/j.conbuildmat.2021.125835.
[34] Mokhtarimousavi S, Anderson J C, Azizinamini A, et al. Factors affecting injury severity in vehicle-pedestrian crashes: A day-of-week analysis using random parameter ordered response models and Artificial Neural Networks [J]. International Journal of Transportation Science and Technology, 2020, 9(2): 100-115. DOI: 10.1016/j.ijtst.2020.01.001.
[35] Zhang Z, He H, Yu C, et al. Using the modified two-mode method to identify surface water in Gaofen-1 images [J]. Journal of Applied Remote Sensing, 2019, 13(2): 022003. DOI: 10.1117/1.JRS.13.022003.
[36] Feng J, Zhang H, Gao K, et al. Efficient creep prediction of recycled aggregate concrete via machine learning algorithms [J]. Construction and Building Materials, 2022, 360: 129497. DOI: 10.1016/j.conbuildmat.2022.129497.
[37] Roy N, Sarkar S, Kuna K K, et al. Effect of coarse aggregate mineralogy on micro-texture deterioration and polished stone value [J]. Construction and Building Materials, 2021, 296: 123716. DOI: 10.1016/j.conbuildmat.2021.123716.
[38] Peng Y, Li J Q, Zhan Y, et al. Finite element method-based skid resistance simulation using in-situ 3D pavement surface texture and friction data [J]. Materials(Basel), 2019, 12(23): 3821. DOI: 10.3390/ma12233821.