|Table of Contents|

[1] Liu Hongwei, Chen Qingchao, Sun Meiqi, Lü Junpeng, et al. Photoinduced dynamically tunable terahertz metamaterial absorber [J]. Journal of Southeast University (English Edition), 2024, 40 (2): 148-154. [doi:10.3969/j.issn.1003-7985.2024.02.005]
Copy

Photoinduced dynamically tunable terahertz metamaterial absorber()
光致动态可调太赫兹超材料吸收器
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 2
Page:
148-154
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2024-06-13

Info

Title:
Photoinduced dynamically tunable terahertz metamaterial absorber
光致动态可调太赫兹超材料吸收器
Author(s):
Liu Hongwei1 Chen Qingchao1 Sun Meiqi1 Lü Junpeng2
1 School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
2 School of Physics, Southeast University, Nanjing 211189, China
刘宏微1 陈庆超1 孙美琪1 吕俊鹏2
1 南京师范大学物理科学与技术学院, 南京 210023; 2 东南大学物理学院, 南京 211189
Keywords:
terahertz metamaterial absorber photoexcitation dynamically tunable
太赫兹 超材料吸收器 光激发 动态可调
PACS:
O441;TB34
DOI:
10.3969/j.issn.1003-7985.2024.02.005
Abstract:
A photoexcited switchable single-band/dual-band terahertz metamaterial absorber with polarization-insensitive and wide-angle absorption is reported. The function switching is realized by modulating the conductivity of the photosensitive GaAs embedded in the resonator, and the surface currents at different GaAs conductivities are extracted to physically explain the absorption mechanism of the metamaterial absorber. The results show that the absorber can realize switching from dual-band absorption at 0.568 and 1.442 THz with 99.08% and 99.56% absorptivity, respectively, to a shift single-band absorption at 0.731 THz with 95.43% absorptivity. The device has an intensity modulation depth of 61.4% and a frequency tuning bandwidth of 60.6%. With these values, the device can be used to fabricate intensity modulators and frequency-selective absorbers in the terahertz band. In addition, the proposed absorber exhibits polarization-independent and wide-angle absorption for transverse electric(TE)and transverse magnetic(TM)polarization waves. The realization of tunable metamaterial absorbers offers opportunities for mature semiconductor technologies and potential applications in active terahertz modulators and switchers.
设计了一种具有偏振不敏感和广角吸收的光激发可切换单/双波段太赫兹超材料吸收器.通过调制嵌入谐振器中的光敏砷化镓的电导率实现功能切换, 并提取不同砷化镓电导率下的表面电流, 对超材料吸收器的吸收机理进行了物理解释.结果表明, 该吸收器可以实现从0.568和1.442 THz的双波段吸收(吸收率为99.08%和99.56%)到0.731 THz的单波段吸收(吸收率为95.43%)的切换.该器件强度调制深度为61.4%, 频率调谐带宽为60.6%, 可制作太赫兹频段的强度调制器和频率选择吸收器.此外, 所提出的吸收器对横电(TE)和横磁(TM)偏振波都具有与偏振无关的广角吸收.可调谐超材料吸收器的实现为成熟的半导体技术以及有源太赫兹调制器和开关的潜在应用提供了机会.

References:

[1] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications—Explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280. DOI: 10.1088/0268-1242/20/7/018.
[2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging—Modern techniques and applications[J].Laser & Photonics Reviews, 2011, 5(1): 124-166. DOI: 10.1002/lpor.201000011.
[3] Liu X W, Liu H J, Sun Q B, et al. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon[J].Applied Optics, 2015, 54(11): 3478-3483. DOI: 10.1364/AO.54.003478.
[4] Zhao L. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. Nanjing: Southeast University, 2018.(in Chinese)
[5] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. DOI: 10.1103/PhysRevLett.100.207402.
[6] Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111. DOI: 10.1063/1.3276072.
[7] Liu J J, Hong Z. Mechanically tunable dual frequency THz metamaterial filter[J]. Optics Communications, 2018, 426: 598-601. DOI: 10.1016/j.optcom.2018.06.019.
[8] Keshavarz A, Zakery A. A novel terahertz semiconductor metamaterial for slow light device and dual-band modulator applications[J]. Plasmonics, 2018, 13(2): 459-466. DOI: 10.1007/s11468-017-0531-3.
[9] Ji H Y, Zhang B, Wang G C, et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure[J].Optics Communications, 2018, 412: 37-40. DOI: 10.1016/j.optcom.2017.11.080.
[10] Faruk A, Sabah C. Absorber and sensor applications of complimentary H-shaped fishnet metamaterial for sub-terahertz frequency region[J].Optik, 2019, 177: 64-70. DOI: 10.1016/j.ijleo.2018.09.145.
[11] Yin S, Zhu J F, Xu W D, et al. High-performance terahertz wave absorbers made of silicon-based metamaterials[J].Applied Physics Letters, 2015, 107(7): 073903. DOI: 10.1063/1.4929151.
[12] Song Z Y, Chen A P, Zhang J H. Terahertz switching between broadband absorption and narrowband absorption[J].Optics Express, 2020, 28(2): 2037-2044. DOI: 10.1364/OE.376085.
[13] Zhao Y, Huang Q P, Cai H L, et al. A broadband and switchable VO2-based perfect absorber at the THz frequency[J].Optics Communications, 2018, 426: 443-449. DOI: 10.1016/j.optcom.2018.05.085.
[14] Xu Z H, Wu D, Liu Y M, et al. Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons[J].Nanoscale Research Letters, 2018, 13(1): 143. DOI: 10.1186/s11671-018-2552-z.
[15] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17): 177403. DOI: 10.1103/physrevlett.110.177403.
[16] Li D M, Yuan S, Yang R C, et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001. DOI:10.3788/AOS202040.0816001. (in Chinese)
[17] Cheng Y Z, Gong R Z, Cheng Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications, 2016, 361: 41-46. DOI: 10.1016/j.optcom.2015.10.031.
[18] Yuan C, Zhao X L, Cao X L, et al. Optical control of terahertz nested split-ring resonators[J].Optical Engineering, 2013, 52(8): 087111. DOI: 10.1117/1.OE.52.8.087111.
[19] Yuan S, Yang R C, Xu J P, et al. Photoexcited switchable single-/dual-band terahertz metamaterial absorber[J].Materials Research Express, 2019, 6(7): 075807. DOI: 10.1088/2053-1591/ab1962.
[20] Zhao X G, Fan K B, Zhang J D, et al. Optically tunable metamaterial perfect absorber on highly flexible substrate[J].Sensors and Actuators A: Physical, 2015, 231: 74-80. DOI: 10.1016/j.sna.2015.02.040.
[21] Pu Y Q, Shen H C, Tang F H, et al. Design of millimeter-wave reflective attenuators with capacitive compensation technique[J].Journal of Southeast University(English Edition), 2023, 39(2): 153-160. DOI: 10.3969/j.issn.1003-7985.2023.02.006.
[22] Xu O, Yang F, Sun Z L. Genetic algorithm design and measurement of sub-millimeter wave diagonal horn[J].Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1134-1139. DOI:10.3969/j.issn.1001-0505.2010.06.002. (in Chinese)
[23] Liu J X, Zhang K L, Liu X K, et al. Switchable metamaterial for enhancing and localizing electromagnetic field at terahertz band[J].Optics Express, 2017, 25(13): 13944. DOI: 10.1364/oe.25.013944.
[24] Shen X P, Cui T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J].Journal of Optics, 2012, 14(11): 114012. DOI: 10.1088/2040-8978/14/11/114012.
[25] Yao G, Ling F R, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J].Optics Express, 2016, 24(2): 1518. DOI: 10.1364/oe.24.001518.

Memo

Memo:
Biography: Liu Hongwei(1986—), female, doctor, professor, phylhw@njnu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. T2222011, 62174026, 12274234), the National Key Research and Development Program of China(No. 2023YFB3611400, 2019YFA0308000), the Fundamental Research Funds for the Central Universities(No. 242023k30027).
Citation: Liu Hongwei, Chen Qingchao, Sun Meiqi, et al. Photoinduced dynamically tunable terahertz metamaterial absorber[J].Journal of Southeast University(English Edition), 2024, 40(2):148-154.DOI:10.3969/j.issn.1003-7985.2024.02.005.
Last Update: 2024-06-20