|Table of Contents|

[1] Liu Hongwei, Chen Qingchao, Sun Meiqi, Lü Junpeng, et al. Photoinduced dynamically tunable terahertz metamaterial absorber [J]. Journal of Southeast University (English Edition), 2024, 40 (2): 148-154. [doi:10.3969/j.issn.1003-7985.2024.02.005]
Copy

Photoinduced dynamically tunable terahertz metamaterial absorber()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 2
Page:
148-154
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2024-06-13

Info

Title:
Photoinduced dynamically tunable terahertz metamaterial absorber
Author(s):
Liu Hongwei1 Chen Qingchao1 Sun Meiqi1 Lü Junpeng2
1 School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
2 School of Physics, Southeast University, Nanjing 211189, China
Keywords:
terahertz metamaterial absorber photoexcitation dynamically tunable
PACS:
O441;TB34
DOI:
10.3969/j.issn.1003-7985.2024.02.005
Abstract:
A photoexcited switchable single-band/dual-band terahertz metamaterial absorber with polarization-insensitive and wide-angle absorption is reported. The function switching is realized by modulating the conductivity of the photosensitive GaAs embedded in the resonator, and the surface currents at different GaAs conductivities are extracted to physically explain the absorption mechanism of the metamaterial absorber. The results show that the absorber can realize switching from dual-band absorption at 0.568 and 1.442 THz with 99.08% and 99.56% absorptivity, respectively, to a shift single-band absorption at 0.731 THz with 95.43% absorptivity. The device has an intensity modulation depth of 61.4% and a frequency tuning bandwidth of 60.6%. With these values, the device can be used to fabricate intensity modulators and frequency-selective absorbers in the terahertz band. In addition, the proposed absorber exhibits polarization-independent and wide-angle absorption for transverse electric(TE)and transverse magnetic(TM)polarization waves. The realization of tunable metamaterial absorbers offers opportunities for mature semiconductor technologies and potential applications in active terahertz modulators and switchers.

References:

[1] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications—Explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280. DOI: 10.1088/0268-1242/20/7/018.
[2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging—Modern techniques and applications[J].Laser & Photonics Reviews, 2011, 5(1): 124-166. DOI: 10.1002/lpor.201000011.
[3] Liu X W, Liu H J, Sun Q B, et al. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon[J].Applied Optics, 2015, 54(11): 3478-3483. DOI: 10.1364/AO.54.003478.
[4] Zhao L. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. Nanjing: Southeast University, 2018.(in Chinese)
[5] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. DOI: 10.1103/PhysRevLett.100.207402.
[6] Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111. DOI: 10.1063/1.3276072.
[7] Liu J J, Hong Z. Mechanically tunable dual frequency THz metamaterial filter[J]. Optics Communications, 2018, 426: 598-601. DOI: 10.1016/j.optcom.2018.06.019.
[8] Keshavarz A, Zakery A. A novel terahertz semiconductor metamaterial for slow light device and dual-band modulator applications[J]. Plasmonics, 2018, 13(2): 459-466. DOI: 10.1007/s11468-017-0531-3.
[9] Ji H Y, Zhang B, Wang G C, et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure[J].Optics Communications, 2018, 412: 37-40. DOI: 10.1016/j.optcom.2017.11.080.
[10] Faruk A, Sabah C. Absorber and sensor applications of complimentary H-shaped fishnet metamaterial for sub-terahertz frequency region[J].Optik, 2019, 177: 64-70. DOI: 10.1016/j.ijleo.2018.09.145.
[11] Yin S, Zhu J F, Xu W D, et al. High-performance terahertz wave absorbers made of silicon-based metamaterials[J].Applied Physics Letters, 2015, 107(7): 073903. DOI: 10.1063/1.4929151.
[12] Song Z Y, Chen A P, Zhang J H. Terahertz switching between broadband absorption and narrowband absorption[J].Optics Express, 2020, 28(2): 2037-2044. DOI: 10.1364/OE.376085.
[13] Zhao Y, Huang Q P, Cai H L, et al. A broadband and switchable VO2-based perfect absorber at the THz frequency[J].Optics Communications, 2018, 426: 443-449. DOI: 10.1016/j.optcom.2018.05.085.
[14] Xu Z H, Wu D, Liu Y M, et al. Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons[J].Nanoscale Research Letters, 2018, 13(1): 143. DOI: 10.1186/s11671-018-2552-z.
[15] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17): 177403. DOI: 10.1103/physrevlett.110.177403.
[16] Li D M, Yuan S, Yang R C, et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001. DOI:10.3788/AOS202040.0816001. (in Chinese)
[17] Cheng Y Z, Gong R Z, Cheng Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications, 2016, 361: 41-46. DOI: 10.1016/j.optcom.2015.10.031.
[18] Yuan C, Zhao X L, Cao X L, et al. Optical control of terahertz nested split-ring resonators[J].Optical Engineering, 2013, 52(8): 087111. DOI: 10.1117/1.OE.52.8.087111.
[19] Yuan S, Yang R C, Xu J P, et al. Photoexcited switchable single-/dual-band terahertz metamaterial absorber[J].Materials Research Express, 2019, 6(7): 075807. DOI: 10.1088/2053-1591/ab1962.
[20] Zhao X G, Fan K B, Zhang J D, et al. Optically tunable metamaterial perfect absorber on highly flexible substrate[J].Sensors and Actuators A: Physical, 2015, 231: 74-80. DOI: 10.1016/j.sna.2015.02.040.
[21] Pu Y Q, Shen H C, Tang F H, et al. Design of millimeter-wave reflective attenuators with capacitive compensation technique[J].Journal of Southeast University(English Edition), 2023, 39(2): 153-160. DOI: 10.3969/j.issn.1003-7985.2023.02.006.
[22] Xu O, Yang F, Sun Z L. Genetic algorithm design and measurement of sub-millimeter wave diagonal horn[J].Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1134-1139. DOI:10.3969/j.issn.1001-0505.2010.06.002. (in Chinese)
[23] Liu J X, Zhang K L, Liu X K, et al. Switchable metamaterial for enhancing and localizing electromagnetic field at terahertz band[J].Optics Express, 2017, 25(13): 13944. DOI: 10.1364/oe.25.013944.
[24] Shen X P, Cui T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J].Journal of Optics, 2012, 14(11): 114012. DOI: 10.1088/2040-8978/14/11/114012.
[25] Yao G, Ling F R, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J].Optics Express, 2016, 24(2): 1518. DOI: 10.1364/oe.24.001518.

Memo

Memo:
Biography: Liu Hongwei(1986—), female, doctor, professor, phylhw@njnu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. T2222011, 62174026, 12274234), the National Key Research and Development Program of China(No. 2023YFB3611400, 2019YFA0308000), the Fundamental Research Funds for the Central Universities(No. 242023k30027).
Citation: Liu Hongwei, Chen Qingchao, Sun Meiqi, et al. Photoinduced dynamically tunable terahertz metamaterial absorber[J].Journal of Southeast University(English Edition), 2024, 40(2):148-154.DOI:10.3969/j.issn.1003-7985.2024.02.005.
Last Update: 2024-06-20