|Table of Contents|

[1] Qian Zhendong, Zhang Shaojin, Min Yitong, Zhao Xinyuan, et al. Design and evaluation of UHPP steel bridge deck pavement for high-temperature and rainy regions [J]. Journal of Southeast University (English Edition), 2024, 40 (3): 257-265. [doi:10.3969/j.issn.1003-7985.2024.03.005]
Copy

Design and evaluation of UHPP steel bridge deck pavement for high-temperature and rainy regions()
高温多雨地区UHPP钢桥面铺装设计与性能评估
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 3
Page:
257-265
Research Field:
Traffic and Transportation Engineering
Publishing date:
2024-09-20

Info

Title:
Design and evaluation of UHPP steel bridge deck pavement for high-temperature and rainy regions
高温多雨地区UHPP钢桥面铺装设计与性能评估
Author(s):
Qian Zhendong1 Zhang Shaojin2 Min Yitong1 Zhao Xinyuan1
1Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, China
2College of Architectural Science and Engineering, Yangzhou University, Yangzhou 510000, China
钱振东1 张少锦2 闵一桐1 赵鑫元1
1东南大学智能运输系统研究中心, 南京 211189; 2扬州大学建筑科学与工程学院, 扬州 510000
Keywords:
steel bridge deck pavement(SBDP) high-temperature environment rainy weather rigid bottom and flexible top temperature field composite structure
钢桥面铺装 高温环境 多雨天气 下刚上柔 温度场 复合结构
PACS:
U419.6
DOI:
10.3969/j.issn.1003-7985.2024.03.005
Abstract:
To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions, a concept of rigid bottom and flexible top was summarized using engineering practices, which led to the proposal of a three-layer ultra-high-performance pavement(UHPP). The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests. The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model. Additionally, a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP. The results indicate that compared with the traditional guss asphalt + stone mastic asphalt structure, the dynamic stability of the UHPP composite structure can be improved by up to 20.4%. Even under cyclic loading, UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs. The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance. UHPP exhibits relatively low tensile stress but higher shear stress levels, with the highest shear stress occurring between the UHPP and the steel plate. This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement. Based on engineering examples, introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.
为提升钢桥面铺装在高温多雨地区的服役性能, 结合工程实践总结了“下刚上柔”概念, 提出了一种三层结构的超高性能铺装(UHPP);通过铺装复合结构试验评估了UHPP的高温抗车辙与雨天抗滑性能;利用温度场模型, 就典型高温天气下各铺装内部温度分布情况展开分析, 并通过温度-应力耦合模型, 探究了UHPP铺装的关键荷位及应力响应特征.分析结果表明:与传统的GA+SMA相比, UHPP复合结构动态稳定性最高可提升20.4%;即使经过循环载荷作用, 与2种传统钢桥面铺装相比, UHPP仍表现出更优越的表面抗滑性能;UHPP的厚度组成对其抗车辙性能和抗滑性能有显著影响;UHPP的拉应力相对较低, 但剪应力水平较高, 且UHPP与钢板间的剪应力最高, 说明UHPP潜在病害风险主要存在于铺装层间.根据工程实例, 可考虑引入层间碎石并优化黏层用量, 以确保UHPP具有足够的层间抗剪能力.

References:

[1] Liu Y, Qian Z D, Hu H B, et al. Developing a skid resistance prediction model for newly built pavement: Application to a case study of steel bridge deck pavement[J]. Road Materials and Pavement Design, 2022, 23(10): 2334-2352. DOI:10.1080/14680629.2021.1972033.
[2] Jia X Y, Huang B S, Chen S J, et al. Comparative investigation into field performance of steel bridge deck asphalt overlay systems[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2755-2764. DOI: 10.1007/s12205-016-0259-1.
[3] Bo W, Ren H S, Geng W, et al. Investigation of the environmental impacts of steel deck pavement based on life cycle assessment[J]. Journal of Southeast University(English Edition), 2020, 36(3):334-340. DOI:10.3969/j.issn.1003-7985.2020.03.012.
[4] Luo S, Lu Q, Qian Z D. Performance evaluation of epoxy modified open-graded porous asphalt concrete[J].Construction and Building Materials, 2015, 76: 97-102. DOI: 10.1016/j.conbuildmat.2014.11.057.
[5] Lu Q, Bors J. Alternate uses of epoxy asphalt on bridge decks and roadways[J]. Construction and Building Materials, 2015, 78: 18-25. DOI: 10.1016/j.conbuildmat.2014.12.125.
[6] Zou G L, Zhang X N, Wu C. Evaluation of steel bridge deck MA mixture properties during construction[J]. Journal of Marine Science and Technology, 2015, 23: 293-301. DOI: 10.6119/JMST-014-0327-2.
[7] Wang M, Xiao L, Hu D Y, et al. Rheological properties of gussasphalt mixture[J]. Journal of Building Materials, 2017, 20(4): 630-634. DOI:10.3969/j.issn.1007-9629.2017.04.023. (in Chinese)
[8] Chen L L, Qian Z D, Chen D X, et al. Feasibility evaluation of a long-life asphalt pavement for steel bridge deck[J]. Advances in Civil Engineering, 2020, 2020: 1-8. DOI: 10.1155/2020/5890945.
[9] Yang L, Xue Y, Qian Z D, et al. Design and research on steel deck pavement structure of Jiujiang Yangtze River Bridge[J]. Highway Engineering, 2021, 46(3): 79-85. DOI:10.19782/j.cnki.1674-0610.2021.03.012. (in Chinese)
[10] Kainuma S, Jeong Y S, Ahn J H, et al. Behavior and stress of orthotropic deck with bulb rib by surface corrosion[J]. Journal of Constructional Steel Research, 2015, 113: 135-145. DOI: 10.1016/j.jcsr.2015.05.014.
[11] Yan Z Y, Jin Z Y, Zhao X L, et al. Dynamic response of bridge deck pavement of three-span steel-concrete composite continuous beam under moving loads[J]. Journal of Southeast University, 2019, 49(6):1109-1115. DOI:10.3969/j.issn.1001-0505.2019.06.013. (in Chinese)
[12] Li C Z, Cai Y P, Zhang J M, et al. On the mesoscale characteristics of hard rains in the Perl River Delta on May 31, 2020[J]. Guangdong Meteorology, 2021, 43(6):6-10. DOI:10.3969/j.issn.1007-6190.2021.06.002. (in Chinese)
[13] Liu Y, Qian Z D, Zhang M. Fatigue damage analysis of epoxy asphalt pavement for steel bridges considering coupled effects of heavy load and temperature variations[J]. Journal of Southeast University(English Edition), 2017, 33(4): 478-483. DOI: 10.3969/j.issn.1003-7985.2017.04.014.
[14] Chen X B, Xu L B, Luo R L, et al. Influence of longitudinal slope on the mechanical response of steel deck pavement[J]. Journal of Southeast University(English Edition), 2018, 34(1): 71-77. DOI: 10.3969/j.issn.1003-7985.2018.01.011.

Memo

Memo:
Biography: Qian Zhendong(1969—), female, doctor, professor, qianzd@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51878167), the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No. KYCX23_0300).
Citation: Qian Zhendong, Zhang Shaojin, Min Yitong, et al. Design and evaluation of UHPP steel bridge deck pavement for high-temperature and rainy regions[J].Journal of Southeast University(English Edition), 2024, 40(3):257-265.DOI:10.3969/j.issn.1003-7985.2024.03.005.
Last Update: 2024-09-20