|Table of Contents|

[1] Huang Juan, Chen Hsuan, Cao Meifang, Ma Yixuan, et al. Responses of soil enzyme and microbial community under co-loading of different microplastics and sulfamethoxazole [J]. Journal of Southeast University (English Edition), 2024, 40 (3): 275-285. [doi:10.3969/j.issn.1003-7985.2024.03.007]
Copy

Responses of soil enzyme and microbial community under co-loading of different microplastics and sulfamethoxazole()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 3
Page:
275-285
Research Field:
Environmental Science and Engineering
Publishing date:
2024-09-20

Info

Title:
Responses of soil enzyme and microbial community under co-loading of different microplastics and sulfamethoxazole
Author(s):
Huang Juan Chen Hsuan Cao Meifang Ma Yixuan Qian Xiuwen
School of Civil Engineering, Southeast University, Nanjing 211189, China
Keywords:
microplastics sulfamethoxazole combined effect soil enzyme microbial community
PACS:
X505;X172
DOI:
10.3969/j.issn.1003-7985.2024.03.007
Abstract:
Polyamide/polyethylene(PA/PE)microplastics were injected into soil containing sulfamethoxazole(SMX)to investigate their combined effects on SMX removal, soil enzyme activity, and microbial communities. The results show that both PA and PE transiently increase SMX removal and inhibite the stimulation of microbial species diversity by SMX. The effect of PE is more significant. Meanwhile, PE combined with SMX increases the relative abundances of Actinobacteria and Pseudomonas, while PA combined with SMX decreases the relative abundances of Nocardioides and Streptomyces. In addition, PA/PE combined with SMX can increase dehydrogenase, urease, ammonia monooxygenase, and nitrate reductase activities in the soil while inhibiting the activity of laccase. Compared with PA combined with SMX, the activities of dehydrogenase, urease, ammonia monooxygenase, and laccase of PE combined with SMX increase by 9.82%, 10.41%, 8.07%, and 5.47%, while the activities of nitrate reductase and neutral phosphatase decrease by 1.47% and 6.78%.

References:

[1] Liu Z M, Ma K X, Z T, et al. Adsorption of tannic acid onto hydrophobic microplastics from water[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(3): 512-518. DOI:10.3969/j.issn.1001-0505.2023.03.016. (in Chinese)
[2] Wong J K H, Lee K K, Tang K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719: 137512. DOI: 10.1016/j.scitotenv.2020.137512.
[3] Shafea L, Yap J, Beriot N, et al. Microplastics in agroecosystems: A review of effects on soil biota and key soil functions[J]. Journal of Plant Nutrition and Soil Science, 2023, 186(1): 5-22. DOI: 10.1002/jpln.202200136.
[4] Crossman J, Hurley R R, Futter M, et al. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment[J]. Science of the Total Environment, 2020, 724: 138334. DOI: 10.1016/j.scitotenv.2020.138334.
[5] Krishnan R Y, Manikandan S, Subbaiya R, et al. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination: A critical review[J]. Science of the Total Environment, 2023, 858: 159681. DOI: 10.1016/j.scitotenv.2022.159681.
[6] Ding J F, Sun C J, He C F, et al. Atmospheric microplastics in the Northwestern Pacific Ocean: Distribution, source, and deposition[J]. Science of the Total Environment, 2022, 829: 154337. DOI: 10.1016/j.scitotenv.2022.154337.
[7] Zhang J J, Ding W C, Zou G Y, et al. Urban pipeline rainwater runoff is an important pathway for land-based microplastics transport to inland surface water: A case study in Beijing[J]. Science of the Total Environment, 2023, 861: 160619. DOI: 10.1016/j.scitotenv.2022.160619.
[8] Xu C Y, Zhang B B, Gu C J, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment?[J]. Journal of Hazardous Materials, 2020, 400: 123228. DOI: 10.1016/j.jhazmat.2020.123228.
[9] Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705. DOI: 10.1016/j.scitotenv.2016.01.153.
[10] Tang K H D. Microplastics in agricultural soils in China: Sources, impacts and solutions[J]. Environmental Pollution, 2023, 322: 121235. DOI: 10.1016/j.envpol.2023.121235.
[11] Huang Y, Zhao Y R, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254: 112983. DOI: 10.1016/j.envpol.2019.112983.
[12] Qi Y L, Beriot N, Gort G, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties[J]. Environmental Pollution, 2020, 266: 115097. DOI: 10.1016/j.envpol.2020.115097.
[13] Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress(L. sativum)to different types of microplastics[J]. Science of the Total Environment, 2020, 727: 138609. DOI: 10.1016/j.scitotenv.2020.138609.
[14] Witte W. Medical consequences of antibiotic use in agriculture[J]. Science, 1998, 279(5353): 996-997. DOI: 10.1126/science.279.5353.996.
[15] Lü J, Yang L, Zhang L, et al. Antibiotics in soil and water in China: A systematic review and source analysis[J]. Environmental Pollution, 2020, 266: 115147. DOI: 10.1016/j.envpol.2020.115147.
[16] Xu Y, Xi M H, Geng C C, et al. Removals of typical antibiotics in sewage by unplanted bioretention cells: Efficiency and its enhancement[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(4): 748-759. DOI: 10.3969/j.issn.1001-0505.2020.04.020.(in Chinese).
[17] Chen P, Jiang J W, Zhang S X, et al. Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole[J]. Chemosphere, 2023, 325: 138410. DOI: 10.1016/j.chemosphere.2023.138410.
[18] Wang H, Yu B, Li B C, et al. A contrasting alteration of sulfamethoxazole bioaccessibility in two different soils amended with polyethylene microplastic: In-situ measurement using diffusive gradients in thin films[J]. Science of the Total Environment, 2022, 808: 152187. DOI: 10.1016/j.scitotenv.2021.152187.
[19] Li J, Guo K, Cao Y S, et al. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics[J]. Environmental Pollution, 2021, 269: 116151. DOI: 10.1016/j.envpol.2020.116151.
[20] Fu B M, Luo J Y, Xu R Z, et al. Co-impacts of the microplastic polyamide and sertraline on the denitrification function and microbial community structure in SBRs[J]. Science of the Total Environment, 2022, 843: 156928. DOI: 10.1016/j.scitotenv.2022.156928.
[21] Ren S Y, Wang K, Zhang J R, et al. Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: A typical case of China[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(7): 533-556. DOI: 10.1080/10643389.2023.2259275.
[22] Wang J, Li J Y, Liu S T, et al. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands[J]. Environmental Pollution, 2021, 269: 116199. DOI: 10.1016/j.envpol.2020.116199.
[23] Riveros G, Soria R, Villafuerte A, et al. Effects of low-density polyethylene and polyamide microplastics on the microbiological and chemical characteristics of an Andisol[J]. Soil Use and Management, 2024, 40(1):12991. DOI: 10.1111/sum.12991.
[24] Tian Z Y, Liu B, Zhang W J, et al. Polyethylene microplastic particles alter the nature, bacterial community and metabolite profile of reed rhizosphere soils[J]. Water, 2023, 15(8): 1505. DOI: 10.3390/w15081505.
[25] Wei R C, Ge F, Zhang L L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China[J]. Chemosphere, 2016, 144: 2377-2383. DOI: 10.1016/j.chemosphere.2015.10.126.
[26] Li Z Q, Wang X Q, Zhang B B, et al. Transmission mechanisms of antibiotic resistance genes in arsenic-contaminated soil under sulfamethoxazole stress[J]. Environmental Pollution, 2023, 326: 121488. DOI: 10.1016/j.envpol.2023.121488.
[27] Fang H, Han L X, Zhang H P, et al. Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil[J]. Science of the Total Environment, 2018, 628: 661-671. DOI: 10.1016/j.scitotenv.2018.02.116.
[28] Bourbonnais R, Paice M G, Freiermuth B, et al. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds[J]. Applied and Environmental Microbiology, 1997, 63(12): 4627-4632. DOI: 10.1128/aem.63.12.4627-4632.1997.
[29] Di Lenola M, Barra Caracciolo A, Grenni P, et al. Effects of apirolio addition and alfalfa and compost treatments on the natural microbial community of a historically PCB-contaminated soil[J]. Water, Air, & Soil Pollution, 2018, 229(5): 143. DOI: 10.1007/s11270-018-3803-4.
[30] Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832. DOI: 10.1021/es2000744.
[31] Chen Y, Su X X, Wang Y Y, et al. Short-term responses of denitrification to chlorothalonil in riparian sediments: Process, mechanism and implication[J]. Chemical Engineering Journal, 2019, 358: 1390-1398. DOI: 10.1016/j.cej.2018.10.148.
[32] Zhang X L, Liu L, Chen X L, et al. The fate and risk of microplastic and antibiotic sulfamethoxazole coexisting in the environment[J]. Environmental Geochemistry and Health, 2023, 45(6): 2905-2915. DOI: 10.1007/s10653-022-01385-8.
[33] Guo X, Chen C, Wang J L. Sorption of sulfamethoxazole onto six types of microplastics[J]. Chemosphere, 2019, 228: 300-308. DOI: 10.1016/j.chemosphere.2019.04.155.
[34] Huang Y J, Ding J N, Zhang G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging[J]. Science of the Total Environment, 2021, 752: 142256. DOI: 10.1016/j.scitotenv.2020.142256.
[35] Xiao J, Huang J, Peng C, et al. Dynamic responses of enzyme activity to silver nanoparticles in rhizosphere soil of constructed wetland[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(1): 178-185. DOI:10.3969/j.issn.1001-0505.2019.01.025. (in Chinese)
[36] Rauseo J, Barra Caracciolo A, Ademollo N, et al. Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure[J]. Journal of Hazardous Materials, 2019, 378: 120769. DOI: 10.1016/j.jhazmat.2019.120769.
[37] Yang W, Peng Z Y, Wang G C. An overview: Metal-based inhibitors of urease[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38(1): 361-375. DOI: 10.1080/14756366.2022.2150182.
[38] Ma Y X, Huang J, Han T W, et al. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands[J]. Water Research, 2021, 202: 117420. DOI: 10.1016/j.watres.2021.117420.
[39] Hui D F, Ray A, Kasrija L, et al. Impacts of climate change and agricultural practices on nitrogen processes, genes, and soil nitrous oxide emissions: A quantitative review of meta-analyses[J]. Agriculture, 2024, 14(2): 240. DOI: 10.3390/agriculture14020240.
[40] Li J X, Li Y X, Maryam B, et al. Microplastic aging alters the adsorption-desorption behaviors of sulfamethoxazole in marine animals: A study in simulated biological liquids[J]. Marine Pollution Bulletin, 2023, 195: 115473. DOI: 10.1016/j.marpolbul.2023.115473.
[41] Parelho C, Rodrigues A S, Barreto M C, et al. Assessing microbial activities in metal contaminated agricultural volcanic soils: An integrative approach[J]. Ecotoxicology and Environmental Safety, 2016, 129: 242-249. DOI: 10.1016/j.ecoenv.2016.03.019.
[42] Jeyabalan J, Veluchamy A, Vishnu Priyan V, et al. A review on the laccase assisted decolourization of dyes: Recent trends and research progress[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 151: 105081. DOI: 10.1016/j.jtice.2023.105081.
[43] Awet T T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1): 11. DOI: 10.1186/s12302-018-0140-6.
[44] Fei Y F, Huang S Y, Zhang H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707: 135634. DOI: 10.1016/j.scitotenv.2019.135634.
[45] Sun K, Chen M H, Qi X M, et al. Laccase-evoked removal of antibiotics: Reaction kinetics, conversion mechanisms, and ecotoxicity assessment[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(2): 162-183. DOI: 10.1080/10643389.2023.2224612.
[46] Huang J, Li R, Ma Y X, et al. Comparison of nitrogen removal performance of constructed wetlands with/without plants under exposure of microplastics[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(3): 504-511. DOI:10.3969/j.issn.1001-0505.2023.03.015. (in Chinese)
[47] Xue W D, Li F X, Zhou Q X. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell[J]. Bioresource Technology, 2019, 289: 121632. DOI: 10.1016/j.biortech.2019.121632.
[48] Reis A C, Kolvenbach B A, Nunes O C, et al. Biodegradation of antibiotics: The new resistance determinants—Part Ⅰ[J]. New Biotechnology, 2020, 54: 34-51. DOI: 10.1016/j.nbt.2019.08.002.
[49] Wang Y, Huang D Q, Yang J H, et al. Polyamide microplastics act as carriers for cephalexin in the anammox process[J]. Chemical Engineering Journal, 2023, 451: 138685. DOI: 10.1016/j.cej.2022.138685.
[50] Zhang Y, Ji Z H, Pei Y S. Nutrient removal and microbial community structure in an artificial-natural coupled wetland system[J]. Process Safety and Environmental Protection, 2021, 147: 1160-70. DOI: 10.1016/j.psep.2021.01.036.
[51] Sanow S, Kuang W Q, Schaaf G, et al. Molecular mechanisms of pseudomonas-assisted plant nitrogen uptake: Opportunities for modern agriculture[J]. Molecular Plant-Microbe Interactions, 2023, 36(9): 536-548. DOI: 10.1094/mpmi-10-22-0223-cr.
[52] Pantigoso H A, Manter D K, Fonte S J, et al. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria[J]. Scientific Reports, 2023, 13(1): 4050. DOI: 10.1038/s41598-023-30915-2.
[53] Qi Y W, Yang F, Gao Y, et al. Role of biochar-derived DOM compositions in enhanced biodegradation of sulfamethoxazole and chloramphenicol[J]. Journal of Hazardous Materials, 2023, 458: 131979. DOI: 10.1016/j.jhazmat.2023.131979.
[54] Feng X J, Deng M, Yu J H, et al. Highly efficient removing polycyclic aromatic hydrocarbons in coking wastewater by bio-augmentation activated sludge with Nocardioides sp. JWJ-L0 through sodium acetate co-metabolism[J]. Journal of Water Process Engineering, 2024, 58: 104844. DOI: 10.1016/j.jwpe.2024.104844.
[55] Bautista-Cruz A, Aquino-Bolaños T, Hernández-Canseco J, et al. Cellulolytic aerobic bacteria isolated from agricultural and forest soils: An overview[J]. Biology, 2024, 13(2): 102. DOI: 10.3390/biology13020102.

Memo

Memo:
Biography: Huang Juan(1980—), female, doctor, professor, 101010942@seu.edu.cn.
Foundation item: Jiangsu Provincial Key Research and Development Program(No. BE2022831).
Citation: Huang Juan, Chen Xuan, Cao Meifang, et al. Responses of soil enzyme and microbial community under co-loading of different microplastics and sulfamethoxazole[J].Journal of Southeast University(English Edition), 2024, 40(3):275-285.DOI:10.3969/j.issn.1003-7985.2024.03.007.
Last Update: 2024-09-20