[1] Liu Z M, Ma K X, Z T, et al. Adsorption of tannic acid onto hydrophobic microplastics from water[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(3): 512-518. DOI:10.3969/j.issn.1001-0505.2023.03.016. (in Chinese)
[2] Wong J K H, Lee K K, Tang K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719: 137512. DOI: 10.1016/j.scitotenv.2020.137512.
[3] Shafea L, Yap J, Beriot N, et al. Microplastics in agroecosystems: A review of effects on soil biota and key soil functions[J]. Journal of Plant Nutrition and Soil Science, 2023, 186(1): 5-22. DOI: 10.1002/jpln.202200136.
[4] Crossman J, Hurley R R, Futter M, et al. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment[J]. Science of the Total Environment, 2020, 724: 138334. DOI: 10.1016/j.scitotenv.2020.138334.
[5] Krishnan R Y, Manikandan S, Subbaiya R, et al. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination: A critical review[J]. Science of the Total Environment, 2023, 858: 159681. DOI: 10.1016/j.scitotenv.2022.159681.
[6] Ding J F, Sun C J, He C F, et al. Atmospheric microplastics in the Northwestern Pacific Ocean: Distribution, source, and deposition[J]. Science of the Total Environment, 2022, 829: 154337. DOI: 10.1016/j.scitotenv.2022.154337.
[7] Zhang J J, Ding W C, Zou G Y, et al. Urban pipeline rainwater runoff is an important pathway for land-based microplastics transport to inland surface water: A case study in Beijing[J]. Science of the Total Environment, 2023, 861: 160619. DOI: 10.1016/j.scitotenv.2022.160619.
[8] Xu C Y, Zhang B B, Gu C J, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment?[J]. Journal of Hazardous Materials, 2020, 400: 123228. DOI: 10.1016/j.jhazmat.2020.123228.
[9] Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705. DOI: 10.1016/j.scitotenv.2016.01.153.
[10] Tang K H D. Microplastics in agricultural soils in China: Sources, impacts and solutions[J]. Environmental Pollution, 2023, 322: 121235. DOI: 10.1016/j.envpol.2023.121235.
[11] Huang Y, Zhao Y R, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254: 112983. DOI: 10.1016/j.envpol.2019.112983.
[12] Qi Y L, Beriot N, Gort G, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties[J]. Environmental Pollution, 2020, 266: 115097. DOI: 10.1016/j.envpol.2020.115097.
[13] Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress(L. sativum)to different types of microplastics[J]. Science of the Total Environment, 2020, 727: 138609. DOI: 10.1016/j.scitotenv.2020.138609.
[14] Witte W. Medical consequences of antibiotic use in agriculture[J]. Science, 1998, 279(5353): 996-997. DOI: 10.1126/science.279.5353.996.
[15] Lü J, Yang L, Zhang L, et al. Antibiotics in soil and water in China: A systematic review and source analysis[J]. Environmental Pollution, 2020, 266: 115147. DOI: 10.1016/j.envpol.2020.115147.
[16] Xu Y, Xi M H, Geng C C, et al. Removals of typical antibiotics in sewage by unplanted bioretention cells: Efficiency and its enhancement[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(4): 748-759. DOI: 10.3969/j.issn.1001-0505.2020.04.020.(in Chinese).
[17] Chen P, Jiang J W, Zhang S X, et al. Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole[J]. Chemosphere, 2023, 325: 138410. DOI: 10.1016/j.chemosphere.2023.138410.
[18] Wang H, Yu B, Li B C, et al. A contrasting alteration of sulfamethoxazole bioaccessibility in two different soils amended with polyethylene microplastic: In-situ measurement using diffusive gradients in thin films[J]. Science of the Total Environment, 2022, 808: 152187. DOI: 10.1016/j.scitotenv.2021.152187.
[19] Li J, Guo K, Cao Y S, et al. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics[J]. Environmental Pollution, 2021, 269: 116151. DOI: 10.1016/j.envpol.2020.116151.
[20] Fu B M, Luo J Y, Xu R Z, et al. Co-impacts of the microplastic polyamide and sertraline on the denitrification function and microbial community structure in SBRs[J]. Science of the Total Environment, 2022, 843: 156928. DOI: 10.1016/j.scitotenv.2022.156928.
[21] Ren S Y, Wang K, Zhang J R, et al. Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: A typical case of China[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(7): 533-556. DOI: 10.1080/10643389.2023.2259275.
[22] Wang J, Li J Y, Liu S T, et al. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands[J]. Environmental Pollution, 2021, 269: 116199. DOI: 10.1016/j.envpol.2020.116199.
[23] Riveros G, Soria R, Villafuerte A, et al. Effects of low-density polyethylene and polyamide microplastics on the microbiological and chemical characteristics of an Andisol[J]. Soil Use and Management, 2024, 40(1):12991. DOI: 10.1111/sum.12991.
[24] Tian Z Y, Liu B, Zhang W J, et al. Polyethylene microplastic particles alter the nature, bacterial community and metabolite profile of reed rhizosphere soils[J]. Water, 2023, 15(8): 1505. DOI: 10.3390/w15081505.
[25] Wei R C, Ge F, Zhang L L, et al. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China[J]. Chemosphere, 2016, 144: 2377-2383. DOI: 10.1016/j.chemosphere.2015.10.126.
[26] Li Z Q, Wang X Q, Zhang B B, et al. Transmission mechanisms of antibiotic resistance genes in arsenic-contaminated soil under sulfamethoxazole stress[J]. Environmental Pollution, 2023, 326: 121488. DOI: 10.1016/j.envpol.2023.121488.
[27] Fang H, Han L X, Zhang H P, et al. Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil[J]. Science of the Total Environment, 2018, 628: 661-671. DOI: 10.1016/j.scitotenv.2018.02.116.
[28] Bourbonnais R, Paice M G, Freiermuth B, et al. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds[J]. Applied and Environmental Microbiology, 1997, 63(12): 4627-4632. DOI: 10.1128/aem.63.12.4627-4632.1997.
[29] Di Lenola M, Barra Caracciolo A, Grenni P, et al. Effects of apirolio addition and alfalfa and compost treatments on the natural microbial community of a historically PCB-contaminated soil[J]. Water, Air, & Soil Pollution, 2018, 229(5): 143. DOI: 10.1007/s11270-018-3803-4.
[30] Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832. DOI: 10.1021/es2000744.
[31] Chen Y, Su X X, Wang Y Y, et al. Short-term responses of denitrification to chlorothalonil in riparian sediments: Process, mechanism and implication[J]. Chemical Engineering Journal, 2019, 358: 1390-1398. DOI: 10.1016/j.cej.2018.10.148.
[32] Zhang X L, Liu L, Chen X L, et al. The fate and risk of microplastic and antibiotic sulfamethoxazole coexisting in the environment[J]. Environmental Geochemistry and Health, 2023, 45(6): 2905-2915. DOI: 10.1007/s10653-022-01385-8.
[33] Guo X, Chen C, Wang J L. Sorption of sulfamethoxazole onto six types of microplastics[J]. Chemosphere, 2019, 228: 300-308. DOI: 10.1016/j.chemosphere.2019.04.155.
[34] Huang Y J, Ding J N, Zhang G S, et al. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging[J]. Science of the Total Environment, 2021, 752: 142256. DOI: 10.1016/j.scitotenv.2020.142256.
[35] Xiao J, Huang J, Peng C, et al. Dynamic responses of enzyme activity to silver nanoparticles in rhizosphere soil of constructed wetland[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(1): 178-185. DOI:10.3969/j.issn.1001-0505.2019.01.025. (in Chinese)
[36] Rauseo J, Barra Caracciolo A, Ademollo N, et al. Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure[J]. Journal of Hazardous Materials, 2019, 378: 120769. DOI: 10.1016/j.jhazmat.2019.120769.
[37] Yang W, Peng Z Y, Wang G C. An overview: Metal-based inhibitors of urease[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38(1): 361-375. DOI: 10.1080/14756366.2022.2150182.
[38] Ma Y X, Huang J, Han T W, et al. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands[J]. Water Research, 2021, 202: 117420. DOI: 10.1016/j.watres.2021.117420.
[39] Hui D F, Ray A, Kasrija L, et al. Impacts of climate change and agricultural practices on nitrogen processes, genes, and soil nitrous oxide emissions: A quantitative review of meta-analyses[J]. Agriculture, 2024, 14(2): 240. DOI: 10.3390/agriculture14020240.
[40] Li J X, Li Y X, Maryam B, et al. Microplastic aging alters the adsorption-desorption behaviors of sulfamethoxazole in marine animals: A study in simulated biological liquids[J]. Marine Pollution Bulletin, 2023, 195: 115473. DOI: 10.1016/j.marpolbul.2023.115473.
[41] Parelho C, Rodrigues A S, Barreto M C, et al. Assessing microbial activities in metal contaminated agricultural volcanic soils: An integrative approach[J]. Ecotoxicology and Environmental Safety, 2016, 129: 242-249. DOI: 10.1016/j.ecoenv.2016.03.019.
[42] Jeyabalan J, Veluchamy A, Vishnu Priyan V, et al. A review on the laccase assisted decolourization of dyes: Recent trends and research progress[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 151: 105081. DOI: 10.1016/j.jtice.2023.105081.
[43] Awet T T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1): 11. DOI: 10.1186/s12302-018-0140-6.
[44] Fei Y F, Huang S Y, Zhang H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707: 135634. DOI: 10.1016/j.scitotenv.2019.135634.
[45] Sun K, Chen M H, Qi X M, et al. Laccase-evoked removal of antibiotics: Reaction kinetics, conversion mechanisms, and ecotoxicity assessment[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(2): 162-183. DOI: 10.1080/10643389.2023.2224612.
[46] Huang J, Li R, Ma Y X, et al. Comparison of nitrogen removal performance of constructed wetlands with/without plants under exposure of microplastics[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(3): 504-511. DOI:10.3969/j.issn.1001-0505.2023.03.015. (in Chinese)
[47] Xue W D, Li F X, Zhou Q X. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell[J]. Bioresource Technology, 2019, 289: 121632. DOI: 10.1016/j.biortech.2019.121632.
[48] Reis A C, Kolvenbach B A, Nunes O C, et al. Biodegradation of antibiotics: The new resistance determinants—Part Ⅰ[J]. New Biotechnology, 2020, 54: 34-51. DOI: 10.1016/j.nbt.2019.08.002.
[49] Wang Y, Huang D Q, Yang J H, et al. Polyamide microplastics act as carriers for cephalexin in the anammox process[J]. Chemical Engineering Journal, 2023, 451: 138685. DOI: 10.1016/j.cej.2022.138685.
[50] Zhang Y, Ji Z H, Pei Y S. Nutrient removal and microbial community structure in an artificial-natural coupled wetland system[J]. Process Safety and Environmental Protection, 2021, 147: 1160-70. DOI: 10.1016/j.psep.2021.01.036.
[51] Sanow S, Kuang W Q, Schaaf G, et al. Molecular mechanisms of pseudomonas-assisted plant nitrogen uptake: Opportunities for modern agriculture[J]. Molecular Plant-Microbe Interactions, 2023, 36(9): 536-548. DOI: 10.1094/mpmi-10-22-0223-cr.
[52] Pantigoso H A, Manter D K, Fonte S J, et al. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria[J]. Scientific Reports, 2023, 13(1): 4050. DOI: 10.1038/s41598-023-30915-2.
[53] Qi Y W, Yang F, Gao Y, et al. Role of biochar-derived DOM compositions in enhanced biodegradation of sulfamethoxazole and chloramphenicol[J]. Journal of Hazardous Materials, 2023, 458: 131979. DOI: 10.1016/j.jhazmat.2023.131979.
[54] Feng X J, Deng M, Yu J H, et al. Highly efficient removing polycyclic aromatic hydrocarbons in coking wastewater by bio-augmentation activated sludge with Nocardioides sp. JWJ-L0 through sodium acetate co-metabolism[J]. Journal of Water Process Engineering, 2024, 58: 104844. DOI: 10.1016/j.jwpe.2024.104844.
[55] Bautista-Cruz A, Aquino-Bolaños T, Hernández-Canseco J, et al. Cellulolytic aerobic bacteria isolated from agricultural and forest soils: An overview[J]. Biology, 2024, 13(2): 102. DOI: 10.3390/biology13020102.