[1] Facchinetti T, Della Vedova M L. Real-time modeling for direct load control in cyber-physical power systems[J]. IEEE Transactions on Industrial Informatics, 2011, 7(4): 689-698. DOI: 10.1109/TII.2011.2166787.
[2] Tang N K, Mao S W, Wang Y, et al. Solar power generation forecasting with a LASSO-based approach[J].IEEE Internet of Things Journal, 2018, 5(2): 1090-1099. DOI: 10.1109/JIOT.2018.2812155.
[3] Zhang R, Liu P F, Wang Q. Estimation model of EPC based on long time series of nighttime light data[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(6): 1094-1102. DOI:10.3969/j.issn.1001-0505.2021.06.023. (in Chinese)
[4] Cao Y, Zheng L, Chen Y F, et al. Identification method and control strategy for superheated steam temperature of thermal power unit based on PFNN[J]. Journal of Southeast University(Natural Science Edition), 2022, 53(3): 417-424. DOI:10.3969/j.issn.1001-0505.2022.03.001. (in Chinese)
[5] Luo J Z, Su C. Optimization of charging pricing strategy based on user behavior and time-of-use tariffs[J]. Journal of Southeast University(Natural Science Edition), 2021, 51(6): 1109-1116. DOI:10.3969/j.issn.1001-0505.2021.06.025. (in Chinese)
[6] Lu R Y, Guo X C, Li J C, et al. Tourist travel behavior in rural areas considering bus route preferences[J]. Journal of Southeast University(English Edition), 2023, 39(1): 49-61. DOI: 10.3969/j.issn.1003-7985.2023.01.006.
[7] Bao Q, Tan X, Qu Q K, et al. Prediction of electric vehicle charging demand based on user space-time activities and fuzzy decision-making[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(6): 1209-1218. DOI:10.3969/j.issn.1001-0505.2022.06.022. (in Chinese)
[8] Rubasinghe O, Zhang X N, Chau T K, et al. A novel sequence to sequence data modelling based CNN-LSTM algorithm for three years ahead monthly peak load forecasting[J].IEEE Transactions on Power Systems, 2024, 39(1): 1932-1947. DOI: 10.1109/TPWRS.2023.3271325.
[9] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// 31st Annual Conference on Neural Information Processing Systems(NIPS). Long Beach, CA, USA, 2017, 30: 6000-6010.
[10] He Z R, Shen Q F, Wu J X, et al. Transformer encoder-based multilevel representations with fusion feature input for speech emotion recognition[J]. Journal of Southeast University(English Edition), 2023, 39(1): 68-73. DOI: 10.3969/j.issn.1003-7985.2023.01.008.
[11] Wen Q S, Zhou T, Zhang C L, et al. Transformers in time series: A survey[EB/OL].(2022-02-15)[2024-05-08]. http://arxiv.org/abs/2202.07125.
[12] Zhou H Y, Zhang S H, Peng J Q, et al.Informer: Beyond efficient transformer for long sequence time-series forecasting[EB/OL].(2020-12-14)[2024-05-08]. http://arxiv.org/abs/2012.07436.
[13] Wu H X, Xu J H, Wang J M, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting[EB/OL].(2021-06-24)[2024-05-08]. http://arxiv.org/abs/2106.13008.
[14] Zhou T, Ma Z Q, Wen Q S, et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting[EB/OL].(2022-01-30)[2024-05-08]. https://arxiv.org/abs/2201.12740.
[15] Lim B, Arık S Ö, Loeff N, et al. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting[J].International Journal of Forecasting, 2021, 37(4): 1748-1764. DOI: 10.1016/j.ijforecast.2021.03.012.
[16] López Santos M, García-Santiago X, Echevarría Camarero F, et al. Application of Temporal Fusion Transformer for day-ahead PV power forecasting[J].Energies, 2022, 15(14): 5232. DOI: 10.3390/en15145232.
[17] Sun S L, Liu Y K, Li Q, et al. Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks[J].Energy Conversion and Management, 2023, 283: 116916. DOI: 10.1016/j.enconman.2023.116916.
[18] L’Heureux A, Grolinger K, Capretz M A M. Transformer-based model for electrical load forecasting[J].Energies, 2022, 15(14): 4993. DOI: 10.3390/en15144993.
[19] Zhao Z Z, Xia C Q, Chi L, et al. Short-term load forecasting based on the transformer model[J].Information, 2021, 12(12): 516. DOI: 10.3390/info12120516.
[20] Fu M Z, Qin M, Guo X J, et al. Magnetic field and coupling effect analysis of a novel dual-rotor dual-stator permanent magnet synchronous generator[J]. Journal of Southeast University(English Edition), 2024, 40(1): 89-96. DOI:10.3969/j.issn.1003-7985.2024.01.010.
[21] Chen K J, Chen K L, Wang Q, et al. Short-term load forecasting with deep residual networks[J].IEEE Transactions on Smart Grid, 2019, 10(4): 3943-3952. DOI: 10.1109/TSG.2018.2844307.
[22] Li Z H, Liu J M, Lin Y Z, et al. Grid-constrained data cleansing method for enhanced bus load forecasting[J].IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9002810. DOI: 10.1109/TIM.2021.3075538.
[23] Rafiei M, Niknam T, Aghaei J, et al. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine[J].IEEE Transactions on Smart Grid, 2018, 9(6): 6961-6971. DOI: 10.1109/TSG.2018.2807845.
[24] Akiba T, Sano S, Yanase T, et al. Optuna: A next-generation hyperparameter optimization framework[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA, 2019: 2623-2631. DOI: 10.1145/3292500.3330701.