[1] Fang Y L, Zhang X S, Liu C. Experimental study of lightweight radiant floor heating system with non-full-coverage heat-conducting plate[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(6): 1104-1113. DOI:10.3969/j.issn.1001-0505.2022.06.010. (in Chinese)
[2] Cabeza L F, Castellón C, Nogués M, et al. Use of microencapsulated PCM in concrete walls for energy savings[J]. Energy and Buildings, 2007, 39(2): 113-119. DOI: 10.1016/j.enbuild.2006.03.030.
[3] Shen Y L, Liu S L, Zeng C, et al. Experimental thermal study of a new PCM-concrete thermal storage block(PCM-CTSB)[J]. Construction and Building Materials, 2021, 293: 123540. DOI: 10.1016/j.conbuildmat.2021.123540.
[4] Erdogmus E, Yaras A, Ustaoglu A, et al. Thermal performance analysis of novel foam concrete composites with PCM for energy storage and environmental benefits in buildings[J]. Energy and Buildings, 2023, 296: 113413. DOI: 10.1016/j.enbuild.2023.113413.
[5] Liu B, Pan G H, Gao M, et al. Influence of grinding aid on the grinding effect of iron tailings and hydration properties of blended cement[J].Journal of Southeast University(Natural Science Edition), 2022, 52(5): 907-916. DOI:10.3969/j.issn.1001-0505.2022.05.011. (in Chinese)
[6] Wang P G, Fu H, Li G G, et al. Effects of Nano-C-S-H-PCE on performance of C50 non-steam cured concrete for coastal subway segment[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(2): 254-262. DOI:10.3969/j.issn.1001-0505.2022.02.007. (in Chinese)
[7] Jiang J Y, Zheng Q, Yan Y R, et al. Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study[J].Applied Energy, 2018, 220: 395-407. DOI: 10.1016/j.apenergy.2018.03.134.
[8] Shamsaei E, de Souza F B, Fouladi A, et al. Graphene oxide-based mesoporous calcium silicate hydrate sandwich-like structure: Synthesis and application for thermal energy storage[J]. ACS Applied Energy Materials, 2022, 5(1): 958-969. DOI: 10.1021/acsaem.1c03356.
[9] Shen X Y, Feng P, Zhang Q, et al. Toward the formation mechanism of synthetic calcium silicate hydrate(C-S-H)-pH and kinetic considerations[J].Cement and Concrete Research, 2023, 172: 107248. DOI: 10.1016/j.cemconres.2023.107248.
[10] Sowoidnich T, Damidot D, Ludwig H M, et al. The nucleation of C-S-H via prenucleation clusters[J]. The Journal of Chemical Physics, 2023, 158(11): 114309. DOI: 10.1063/5.0141255.
[11] Liu Z M, Shao C Y, Jin B, et al. Crosslinking ionic oligomers as conformable precursors to calcium carbonate[J].Nature, 2019, 574(7778): 394-398. DOI: 10.1038/s41586-019-1645-x.
[12] Shen X Y, Feng P, Liu X, et al.New insights into the non-classical nucleation of C-S-H[J]. Cement and Concrete Research, 2023, 168: 107135. DOI: 10.1016/j.cemconres.2023.107135.
[13] Salunkhe P B, Shembekar P S. A review on effect of phase change material encapsulation on the thermal performance of a system[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5603-5616. DOI: 10.1016/j.rser.2012.05.037.
[14] Matsuyama H, Young J F. Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution[J].Advances in Cement Research, 2000, 12(1): 29-33. DOI: 10.1680/adcr.2000.12.1.29.
[15] Liu X, Feng P, Li W, et al. Effects of pH on the nano/micro structure of calcium silicate hydrate(C-S-H)under sulfate attack[J].Cement and Concrete Research, 2021, 140: 106306. DOI: 10.1016/j.cemconres.2020.106306.
[16] Wu Y J, Sha S L, Liu H Y, et al. Variable temperature infrared spectroscopy of paraffin[J]. Measurement Technique, 2020, 3:5-10.(in Chinese)
[17] Niculescu O, Leca M, Moldovan Z, et al. Obtaining and characterization of an ecologic wax emulsions for finishing natural leathers and furs[J].Revista De Chimie, 2015, 66(8): 1173-1176.
[18] Zhao G, Zhu B D, Zou N N, et al. Research progress of paraffin-based microencapsulated phase change materials[J]. Polymer Bulletin, 2023, 36(9): 1136-1146. DOI:10.14028/j.cnki.1003-3726.2023.09.003. (in Chinese)
[19] Han S J, Chen Y P, Lü S Y, et al. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124046. DOI: 10.1016/j.colsurfa.2019.124046.
[20] Huo J H, Peng Z G, Feng Q. Synthesis and properties of microencapsulated phase change material with a urea-formaldehyde resin shell and paraffin wax core[J].Journal of Applied Polymer Science, 2020, 137(16): e48578. DOI: 10.1002/app.48578.
[21] Wan X, Zhang H Y, Chen C, et al. Synthesis and characterization of phase change materials microcapsules with paraffin core/cross-linked hybrid polymer shell for thermal energy storage[J].Journal of Energy Storage, 2020, 32: 101897. DOI: 10.1016/j.est.2020.101897.
[22] Zhang Q Q, Sun Z C, Li G M, et al. Preparation and printing application of paraffin@silica phase change microcapsules[J]. Digital Printing, 2021, 3: 85-91. DOI:10.19370/j.cnki.cn10-1304/ts.2021.03.008. (in Chinese)
[23] Ma X C, Liu Y J, Liu H, et al. Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(17): 15241-15248. DOI: 10.1007/s10854-018-9666-z.
[24] Shi J, Wu X L, Sun R, et al. Synthesis and performance evaluation of paraffin microcapsules with calcium carbonate shell modulated by different anionic surfactants for thermal energy storage[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571: 36-43. DOI: 10.1016/j.colsurfa.2019.03.029.
[25] Zhuang X H, Zhang Y, Cai C, et al. Design the magnetic microencapsulated phase change materials with poly(MMA-MAA)@ n-octadecane modified by Fe3O4[J]. Scientific Reports, 2018, 8(1): 16379. DOI: 10.1038/s41598-018-34583-5.