|Table of Contents|

[1] Zhao Xu, Yang Yujie, Huang Jingqi, Zhao Mi, et al. Optimal intensity measures for longitudinal seismic response of tunnels [J]. Journal of Southeast University (English Edition), 2024, 40 (4): 346-354. [doi:10.3969/j.issn.1003-7985.2024.04.003]
Copy

Optimal intensity measures for longitudinal seismic response of tunnels()
适用于隧道纵向地震响应评估的地震动强度参数优选
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
40
Issue:
2024 4
Page:
346-354
Research Field:
Civil Engineering
Publishing date:
2024-12-03

Info

Title:
Optimal intensity measures for longitudinal seismic response of tunnels
适用于隧道纵向地震响应评估的地震动强度参数优选
Author(s):
Zhao Xu1 Yang Yujie1 Huang Jingqi2 Zhao Mi1 Cao Shengtao3
1Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3Guangzhou Yingli Technology Co., Ltd., Guangzhou, 510700, China
赵旭1 杨宇杰1 黄景琦2 赵密1 曹胜涛3
1北京工业大学城市安全与灾害工程教育部重点实验室, 北京 100124; 2北京科技大学土木与资源工程学院, 北京 100083; 3广州颖力科技有限公司, 广州 510700
Keywords:
seismic intensity measures tunnel longitudinal direction probabilistic seismic demand model soil-tunnel interaction improved ground-beam model
地震动强度参数 隧道纵向 概率性地震需求模型 土-结相互作用 改进地基-梁模型
PACS:
TU921
DOI:
10.3969/j.issn.1003-7985.2024.04.003
Abstract:
To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures, 21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures, in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions. An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels. The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment. Five different site types are considered and 21 IMs is evaluated against four criteria: effectiveness, practicality, usefulness, and sufficiency. The results indicate that the optimal IMs are significantly influenced by the site conditions. Specifically, sustained maximum velocity(VSM)emerges as the optimal IM for circular tunnels in soft soil conditions(Case Ⅰ sites), peak ground velocity(VPG)is best suited for Case Ⅱ sites, sustained maximum acceleration(ASM)is ideal for both Case Ⅲ and Case Ⅴ sites, and peak ground acceleration(APG)for Case Ⅳ sites. As site conditions transition from Case Ⅰ to Case Ⅴ, from soft to hard, the applicability of acceleration-type intensity parameters gradually decreases, while the applicability of velocity-type intensity parameters gradually increases.
为研究适用于隧道结构纵向抗震性能设计的地震动强度参数(IMs), 选取21个不同的地震动强度参数进行了隧道结构的非线性计算和分析, 以确定不同场地条件下隧道结构纵向的最优IM.建立了改进非线性梁-弹簧模型以计算隧道结构纵向的地震响应, 其中采用了PQ-Fiber模型来模拟隧道结构纵向的非线性行为, 以弯矩荷载作用在隧道结构上的形式模拟隧道与土之间的切向相互作用;选取了5种不同的场地类型, 采用有效性、实用性、有益性和充分性4类评价准则对21个IMs进行优选.结果表明:场地条件对最佳IMs具有显著影响, 持续最大速度VSM是Ⅰ级场地圆形隧道的最佳IM;峰值速度VPG是Ⅱ级场地的最佳IM;持续最大加速度ASM是Ⅲ级和Ⅴ级场地的最佳IM;峰值加速度APG是Ⅳ级场地的最佳IM.可见, 随着场地条件从Ⅰ类到Ⅴ类, 从软到硬, 加速度型强度参数适用性逐渐降低, 而速度型强度参数适用性逐渐增强.

References:

[1] He C, Koizumi A. Study on seismic behavior and seismic design methods in transverse direction of shield tunnels[J].Structural Engineering and Mechanics, 2001, 11(6): 651-662. DOI: 10.12989/sem.2001.11.6.651.
[2] Liu X D, Liu M H, Jin X N. Technological development and prospect of China’s large-scale cross-sea passage project[J].Journal of Southeast University(Natural Science Edition), 2023, 53(6): 988-996. DOI:10.3969/j.issn.1001-0505.2023.06.005. (in Chinese)
[3] Huang Z K, Pitilakis K, Tsinidis G, et al. Seismic vulnerability of circular tunnels in soft soil deposits: The case of Shanghai metropolitan system[J].Tunnelling and Underground Space Technology, 2020, 98: 103341. DOI: 10.1016/j.tust.2020.103341.
[4] Liu H Q, Song K Z, Ye Z, et al. Seismic fragility analysis of in-service shield tunnels considering surface building and joint-bolt corrosion[J].Soil Dynamics and Earthquake Engineering, 2022, 162: 107455. DOI: 10.1016/j.soildyn.2022.107455.
[5] Wang M, Du X L, Sun F F, et al. Fragility analysis and inelastic seismic performance of steel braced-core-tube frame outrigger tall buildings with passive adaptive negative stiffness damped outrigger[J].Journal of Building Engineering, 2022, 52: 104428. DOI: 10.1016/j.jobe.2022.104428.
[6] Yu X H, Zhou Z, Du W Q, et al. Development of fragility surfaces for reinforced concrete buildings under mainshock-aftershock sequences[J].Earthquake Engineering & Structural Dynamics, 2021, 50(15): 3981-4000. DOI: 10.1002/eqe.3542.
[7] Lin J C, Sun W Y, Li G Y, et al. Seismic fragility of shallowly buried bias loess tunnels based on vector-valued intensity measures[J].Journal of Southeast University(Natural Science Edition), 2024, 54(2):432-440.DOI:10.3969/j.issn.1001-0505.2024.02.021. (in Chinese)
[8] Chen Z Y, Wei J S. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J].Natural Hazards, 2013, 65(3): 1683-1702. DOI: 10.1007/s11069-012-0437-5.
[9] Zhang C M, Zhong Z L, Zhao M. Study on ground motion intensity measures for seismic response evaluation of circular tunnel[J].IOP Conference Series: Earth and Environmental Science, 2020, 455(1): 012164. DOI: 10.1088/1755-1315/455/1/012164.
[10] Hashash Y M A, Park D. Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment[J].Engineering Geology, 2001, 62(1/2/3): 185-206. DOI: 10.1016/S0013-7952(01)00061-8.
[11] Jiang B J, Xian Q L, Zhou F L. The influence analysis of the effect of pile-soil contact on the seismic response of the high speed railway bridge[J].Journal of Guangzhou University(Natural Science Edition), 2016, 15(1): 57-63.(in Chinese)
[12] Shakib H, Jahangiri V. Intensity measures for the assessment of the seismic response of buried steel pipelines[J].Bulletin of Earthquake Engineering, 2016, 14(4): 1265-1284. DOI: 10.1007/s10518-015-9863-6.
[13] Jiang H, Gu Q, Huang L, et al. Analysis on seismic vulnerability of offshore cable-stayed bridge considering time-dependent deterioration by chloride-induced corrosion[J].Journal of Southeast University(Natural Science Edition), 2021, 51(1):38-45.DOI:10.3969/j.issn.1001-0505.2021.01.006. (in Chinese)
[14] Jiang H, Li C, Feng M Y, et al. Analysis on probabilistic seismic damage characteristics of dry joint prefabricated bridge pier based on kernel density estimation[J].Journal of Southeast University(Natural Science Edition), 2021, 51(4):566-574.DOI:10.3969/j.issn.1001-0505.2021.04.003. (in Chinese)
[15] Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J].Journal of Structural Engineering, 2002, 128(4): 526-533. DOI: 10.1061/(asce)0733-9445(2002)128: 4(526).
[16] Deng X S, Lai X Y, Yuan K, et al. Vulnerability analysis of multiple ground motion intensity measure rectors for high-rise RC frame structure under rare earthquake[J]. World Earthquake Engineering, 2022, 38(3): 19-29. DOI:10. 19994/j. cnki. WEE. 2022.0053. (in Chinese)
[17] Mackie K, Stojadinovic B. Probabilistic seismic demand model for California highway bridges[J].Journal of Bridge Engineering, 2001, 6(6): 468-481. DOI: 10.1061/(asce)1084-0702(2001)6: 6(468).
[18] Padgett J E, Nielson B G, DesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J].Earthquake Engineering & Structural Dynamics, 2008, 37(5): 711-725. DOI: 10.1002/eqe.782.
[19] Luco N, Cornell C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J].Earthquake Spectra, 2007, 23(2): 357-392. DOI: 10.1193/1.2723158.
[20] Tsinidis G, Di Sarno L, Sextos A, et al. Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities[J].Soil Dynamics and Earthquake Engineering, 2020, 131: 106030. DOI: 10.1016/j.soildyn.2019.106030.
[21] Zhao M, Li H F, Huang J Q, et al. Analytical solutions considering tangential contact conditions for circular lined tunnels under longitudinally propagating shear waves[J].Computers and Geotechnics, 2021, 137: 104301. DOI: 10.1016/j.compgeo.2021.104301.
[22] Liu Z Q, Du Z Y, Xue J Y, et al. Experimental study and finite element analysis on seismic behavior of solid-web steel reinforced concrete cross-shaped and L-shaped columns[J].Journal of Building Structures, 2019, 40(4): 104-115. DOI:10.14006/j.jzjgxb.2019.04.011. (in Chinese)
[23] Li X Y, Zhao X, Li Y H. Green’s functions of the forced vibration of Timoshenko beams with damping effect[J].Journal of Sound and Vibration, 2014, 333(6): 1781-1795. DOI: 10.1016/j.jsv.2013.11.007.

Memo

Memo:
Biographies: Zhao Xu(1976—), female, docotor, associate professor; Zhao Mi(corresponding author), male, docotor, professor, zhaomi@bjut.edu.cn.
Foundation items: National Key Research and Development Program of China(No.2022YFC3004300), the National Natural Science Foundation of China(No.52378475).
Citation: Zhao Xu, Yang Yujie, Huang Jingqi, et al. Optimal intensity measures for longitudinal seismic response of tunnels[J].Journal of Southeast University(English Edition), 2024, 40(4):346-354.DOI:10.3969/j.issn.1003-7985.2024.04.003.
Last Update: 2024-12-20