|Table of Contents|

[1] WANG Qiang, KE Junchen, BAI Lin,. Programmable array antenna based on nematic liquid crystals for the Ka‑band [J]. Journal of Southeast University (English Edition), 2025, 41 (1): 78-83. [doi:10.3969/j.issn.1003-7985.2025.01.010]
Copy

Programmable array antenna based on nematic liquid crystals for the Ka‑band()
一种基于向列液晶的Ka频段可编程天线阵
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 1
Page:
78-83
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2025-03-07

Info

Title:
Programmable array antenna based on nematic liquid crystals for the Ka‑band
一种基于向列液晶的Ka频段可编程天线阵
Author(s):
WANG Qiang12 KE Junchen12 BAI Lin3
1.Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China
2.School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
3.School of Information Science and Engineering, Southeast University, Nanjing 211189, China
王强12 柯俊臣12 柏林3
1.桂林电子科技大学广西光电信息处理重点实验室,桂林 541004
2.桂林电子科技大学光电工程学院,桂林 541004
3.东南大学信息科学与工程学院,南京 211189
Keywords:
array antenna nematic liquid crystals electronically beam scanning field programmable gate array (FPGA)
天线阵向列液晶电控波束扫描现场可编程门阵列(FPGA)
PACS:
O441.4;TN929.5
DOI:
10.3969/j.issn.1003-7985.2025.01.010
Abstract:
A programmable low‑profile array antenna based on nematic liquid crystals (NLCs) is proposed. Each antenna unit comprises a square patch radiating structure and a tunable NLC‑based phase shifter capable of achieving a phase shift exceeding 360° with high linearity. First, the above 64 antenna units are periodically arranged into an 8 × 8 NLC‑based antenna array, and the bias voltage of the NLC‑based phase shifter loaded on the antenna unit is adjusted through the control of the field‑programmable gate array (FPGA) programming sequences. This configuration enables precise phase changes for all 64 channels. Numerical simulation, sample processing, and experimental measurements of the antenna array are conducted to validate the performance of the antenna. The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5‑20.5 GHz, with a 3 dB relative bandwidth of 10% and a maximum main lobe gain of 14.1 dBi. A maximum scanning angle of ±34° is achieved through the adjustment of the FPGA programming sequence. This NLC‑based programmable array antenna shows promising potential for applications in satellite communication.
设计了一款基于向列液晶的可编程低剖面动态波束扫描阵列天线。该天线单元由方形的辐射贴片结构和向列液晶移相器组成,其中移相器能够实现全相位360°线性变化。首先,将上述64个液晶天线单元周期排列成8×8的阵列天线,通过控制现场可编程门阵列(FPGA)编程编码序列来调节加载在天线单元中液晶移相器的电压,并提供相应的相位变化,从而对64路的液晶天线单元进行独立馈电控制。随后,对该天线阵列进行了数值仿真、样品加工和实验测量。数值仿真和实验测量的结果表明,该天线在19.5~20.5 GHz频率范围内具有良好的性能,3 dB增益带宽为10%,主瓣最大增益为14.1 dBi。通过控制FPGA的编码序列可实现±34°的波束动态扫描。该向列液晶天线阵列在未来卫星通信领域具有潜在的应用价值。

References:

[1]WU B, WU L, ZOU C R. Adaptive modulation in MIMO optical wireless communication systems[J]. Journal of Southeast University (English Edition), 2015, 31(2): 175‑180.
[2]MIRANDA F A, SUBRAMANYAM G, VAN KEULS F W, et al. Design and development of ferroelectric tunable microwave components for Ku‑ and K‑band satellite communication systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(7): 1181‑1189.
[3]YANG L L, QIN T, TU Y, et al. Simulation study on retinal imaging display based on meta‑surface micro‑nano structures[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(4): 990‑996.(in Chinese)
[4]GU Y Q, CAO W Z, YUAN S F, et al. Inverse finite element method based shape reconstruction for spaceborne antenna structures under thermal load[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(4): 997‑1004. (in Chinese)
[5]SHAO X X, HE X Y, ZHANG J L. Multi‑scale two‑dimensional digital image correlation system and its application[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 242‑246. (in Chinese)
[6]VALANARASI A, DHANASEKARAN R. Optimum band ε shaped miniature implantable antennas for telemetry applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 55‑63.
[7]ZHANG H, CHEN L Q, YANG B, et al. Secure lightweight data using scheme in 5G industrial Internet systems[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(3): 772‑780. (in Chinese)
[8]WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys and Tutorials, 2023, 25(2): 905‑974.
[9]HUFF G H, BERNHARD J T. Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 464‑469.
[10]RAJAGOPALAN H, RAHMAT‑SAMII Y, IMBRIALE W A. RF MEMS actuated reconfigurable reflectarray patch‑slot element[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(12): 3689‑3699.
[11]ZHANG X G, JIANG W X, TIAN H W, et al. Pattern‑reconfigurable planar array antenna characterized by digital coding method[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1170‑1175.
[12]CHANG L, LI Y, ZHANG Z J, et al. Reconfigurable 2‑bit fixed‑frequency beam steering array based on microstrip line[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 683‑691.
[13]ZHANG X G, YU Q, JIANG W X, et al. Polarization‑controlled dual‑programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382.
[14]BAI L, ZHANG X G, WANG Q, et al. Dual‑band reconfigurable metasurface‑assisted Fabry‑Pérot antenna with high‑gain radiation and low scattering[J]. IET Microwaves, Antennas & Propagation, 2020, 14(15): 1933‑1942.
[15]JING H Y, TANG M R, HAN Y D, et al. Magnetic and microwave absorbing properties of M‑type bariumferrite/graphene oxide composite microwave absorber[J]. Journal of Southeast University (English Edition), 2015, 31(4): 511‑515.
[16]WANG Q, ZHANG X G, TIAN H W, et al. Millimeter‑wave digital coding metasurfaces based on nematic liquid crystals[J]. Advanced Theory and Simulations, 2019, 2(12): 1900141.
[17]LIU H W, CHEN Q C, SUN M Q, et al. Photoinduced dynamically tunable terahertz metamaterial absorber[J]. Journal of Southeast University (English Edition), 2024, 40(2): 148‑154.
[18]WANG Q, JIANG W X, SHEN H Y. Design of low‑profile array antenna working at 110 GHz based on digital coding characterization[J]. Science China Information Sciences, 2021, 64(10): 209303.
[19]KOMAR A, PANIAGUA‑DOMÍNGUEZ R, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742‑1748.
[20]MIAO P, WANG Z G. 10 Gbit/s PRBS tester implemented in FPGA[J]. Journal of Southeast University (English Edition), 2007, 23 (4): 516‑519.
[21]LI X Y, WAN Y L, LIU J, et al. Broadband electronically scanned reflectarray antenna with liquid crystals[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 396‑400.
[22]LI X Y, JIANG D, LIU J, et al. A Ka‑band multilayer beaming‑scanning antenna using liquid crystals[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 44‑48.
[23]LI J X, JIN T, ERNI D, et al. Design and numerical demonstration of a 2D millimeter‑wave beam‑scanning reflectarray based on liquid crystals and a static driving technique[J]. Journal of Physics D: Applied Physics, 2019, 52(27): 275103.

Memo

Memo:
Received 2024-10-25,Revised 2024-12-11.
Biographies: Wang Qiang(1991─), male, doctor,associate professor;Ke Junchen (corresponding author), male, doctor, kejunchenddyb@foxmail.com.
Foundation items:The National Natural Science Foundation of China (No. 62401168, 62401139, 62401170), China Postdoctoral Science Foundation (No. 2023MD744197), Postdoctoral Fellowship Program of CPSF (No. GZC20230631), Project for Enhancing Young and Middle-aged Teacher’s Research Basis Ability in Colleges of Guangxi (No. 2023KY0218), Guangxi Key Laboratory Foundation of Optoelectronic Information Processing (No. GD23102).
Citation:WANG Qiang,KE Junchen,BAI Lin.Programmable array antenna based on nematic liquid crystals for the Ka-band[J].Journal of Southeast University (English Edition),2025,41(1):78-83.DOI:10.3969/j.issn.1003-7985.2025.01.010.DOI:10.3969/j.issn.1003-7985.2025.01.010
Last Update: 2025-03-20