|Table of Contents|

[1] CAI Miaohong, CHENG Qiang, MENG Jinli, ZHAO Dehua, et al. Improved algorithm of multi‑mainlobe interference suppression under uncorrelated and coherent conditions [J]. Journal of Southeast University (English Edition), 2025, 41 (1): 84-90. [doi:10.3969/j.issn.1003-7985.2025.01.011]
Copy

Improved algorithm of multi‑mainlobe interference suppression under uncorrelated and coherent conditions()
非相关/相干环境下多主瓣干扰抑制改进算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 1
Page:
84-90
Research Field:
Electromagnetic Field and Microwave Technology
Publishing date:
2025-03-07

Info

Title:
Improved algorithm of multi‑mainlobe interference suppression under uncorrelated and coherent conditions
非相关/相干环境下多主瓣干扰抑制改进算法
Author(s):
CAI Miaohong CHENG Qiang MENG Jinli ZHAO Dehua
Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
National Key Laboratory of Radar Detection and Sensing, Nanjing 210039, China
Jiangsu Provincial Key Laboratory of Detection and Sensing Technology, Nanjing 210039, China
蔡苗红 程强 孟晋丽 赵德华
南京电子技术研究所,南京 210039
雷达探测感知全国重点实验室,南京 210039
江苏省探测感知技术重点实验室,南京 210039
Keywords:
mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
主瓣干扰抑制自适应波束形成(ABF)空间谱估计迭代自适应算法(IAA)阻塞矩阵预处理(BMP)
PACS:
TN95
DOI:
10.3969/j.issn.1003-7985.2025.01.011
Abstract:
A new method based on the iterative adaptive algorithm (IAA) and blocking matrix preprocessing (BMP) is proposed to study the suppression of multi‑mainlobe interference. The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival (DOA) of interferences to overcome the drawbacks associated with conventional adaptive beamforming (ABF) methods. The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors (SVs)and rejected by the BMP pretreatment. Then, IAA is subsequently employed to reconstruct a sidelobe interference⁃plus‑noise covariance matrix for the preferable ABF and residual interference suppression. Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen‑projection matrix perprocessing (EMP) under both uncorrelated and coherent circumstances.
为研究多主瓣干扰抑制,提出了一种基于迭代自适应算法(IAA)与阻塞矩阵预处理(BMP)的新方法。为克服常规自适应波束形成(ABF)方法存在的缺陷,提出了应用IAA进行空间谱的准确估计与干扰源到达方向(DOA)的准确估计,其中主瓣干扰分量主要通过方向导向矢量(SVs)之间相干系数的计算进行识别,并利用阻塞矩阵预处理(BMP)进行剔除。利用IAA进行旁瓣干扰与噪声协方差矩阵重构,从而实现更优ABF与剩余干扰抑制。仿真结果表明,无论在非相关或相干干扰环境下,所提方法与常规基于BMP或特征投影矩阵预处理(EMP)的方法相比均具有更优性能。

References:

[1]SPEZIO A E. Electronic warfare systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 633‑644.
[2]BUCKLEY K, GRIFFITHS L. An adaptive generalized sidelobe canceller with derivative constraints[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 311‑319.
[3]FARINA A. Electronic counter‑countermeasures[M]// Radar Handbook. 3rd ed. New York, NY, USA: McGraw‑Hill, 2008:10‑15.
[4]CHEN H, GUO X W, LIU C, et al. Optimal control method for complex nonlinear systems based on disturbance observer[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(4): 1046‑1052. (in Chinese)
[5]ZHAO Y J, TIAN B, WANG C Y, et al. Research on main‑lobe deceptive jamming against FDA‑MIMO radar[J]. IET Radar, Sonar & Navigation, 2021, 15(6): 641‑654.
[6]LAN L,LIAO G S,XU J W, et al. Main‑beam range deceptive jamming suppression approach with FDA‑MIMO radar[J]. Systems Engineering and Electronics, 2018, 40(5): 997‑1003.
[7]HAN B W, LAN T, YANG X P. Beamspace⁃polarization domain main‑lobe jamming suppression method for distributed array radar[J]. Modern Radar, 2021, 43(10): 21‑26.(in Chinese)
[8]NING L Y, YANG X P. Multi‑base polarization radar main‑lobe interference suppression algorithm[J]. Journal of Signal Processing, 2017, 33(12): 1571‑1577.(in Chinese)
[9]YANG X P, YIN P L, ZENG T. Mainlobe interference suppression based on large aperture auxiliary array[C]//2012 IEEE Asia‑Pacific Conference on Antennas and Propagation. Singapore, 2012: 317‑318.
[10]YANG X P, YIN P L, ZENG T, et al. Applying auxiliary array to suppress mainlobe interference for ground⁃based radar[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 433‑436.
[11]LI R F, WANG Y L, WAN S H. Robust adaptive beam forming under main lobe interference conditions[J]. Systems Engineering and Electronics, 2002, 24(7): 61‑64.(in Chinese)
[12]LI R F, WANG Y L, WAN S H. Research of reshaping adapted pattern under mainlobe interference conditions[J]. Modern Radar, 2002, 24(3): 50‑53.(in Chinese)
[13]CHEN Z,JIA W,JIN W,et al. Analysis of mainlobe interference suppression algorithms based on eigen⁃projection matrix preprocessing[J]. Modern Radar, 2020,42(4): 55‑60.(in Chinese)
[14]YANG X P, ZHANG Z A, ZENG T, et al. Mainlobe interference suppression based on eigen‑projection processing and covariance matrix reconstruction[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1369‑1372.
[15]WANG Y S, BAO Q L, CHEN Z P. Robust mainlobe interference suppression for coherent interference environment[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 135.
[16]YU S J, LEE J H. Efficient eigenspace‑based array signal processing using multiple shift‑invariant subarrays[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(1): 186‑194.
[17]SU B W, WANG Y L, ZHOU L Z. A mainlobe interference cancelling method[C]//2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Beijing, China, 2005: 23‑26.
[18]PAN S, ZHANG Y S, GE Q C, et al. Multi‑mainlobe interferences suppression based on interference covariance matrix reconstruction[J]. Journal of Physics: Conference Series, 2019, 1176: 042011.
[19]HU H T, ZHANG J Y, LI X B, et al. Anti‑mainlobe interference algorithm based on blocking matrix preprocessing[J]. Journal of Detection & Control, 2018, 40(5): 94‑99.(in Chinese)
[20]ZHANG M, SONG R, ZHANG X Y, et al. Main lobe jamming suppression algorithm based on blocking matrix pre‑processing and covariance matrix reconstruction[C]//Eleventh International Conference on Signal Processing Systems. Chengdu, China, 2019.
[21]ZHAO J,LIN L,DONG W. A new variable step‑size LMS method and its application in DOA estimation of OFDMA signals [J]. Journal of Southeast University (English Edition), 2020, 36 (2): 145‑151.
[22]WANG Q Y, ZHAO L, LIANG R Y, et al. Compressive sampling and DOA estimation method for miniature mircophone array[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(4): 687‑691. (in Chinese)
[23]WANG W X, WU Z Y, PENG Y X, et al. DOA estimation based on counteraction of interferences’ correlation matrices[J]. Journal of Southeast University (Natural Science Edition), 2004, 34(3): 301‑304.(in Chinese)
[24]STOICA P, MOSES R L. Spectral analysis of signals[M]. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2005: 5‑15.
[25]ZHANG Y F, CHEN X, ZHANG J C, et al. Multi‑object tracking based on deep aggregation high‑resolution network[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(1): 14‑20. (in Chinese).
[26]SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276‑280.
[27]LI A Q, ZHANG C, ZHONG G Q, et al. Automatic identification method for structural modal parameters based on stochastic subspace identification[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(1): 53‑60.(in Chinese)
[28]STOICA P, LI J, HE H. Spectral analysis of nonuniformly sampled data: A new approach versus the periodogram[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 843‑858.
[29]YARDIBI T, LI J, STOICA P, et al. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425‑443.

Memo

Memo:
Received 2023-12-08,Revised 2024-09-02.
Biography:Cai Miaohong (1983─), female, doctor, senior engineer, caimiaohong@cetc.com.cn.
Foundation item:The National Natural Science Foundation of China (No. U19B2031).
Citation:CAI Miaohong,CHENG Qiang,MENG Jinli,et al.Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions[J].Journal of Southeast University (English Edition),2025,41(1):84-90.DOI:10.3969/j.issn.1003-7985.2025. 01.011.DOI:10.3969/j.issn.1003-7985.2025.01.011
Last Update: 2025-03-20