|Table of Contents|

[1] ZHANG Gaoqiang, LI Liangliang, LIANG Cai, MENG He, et al. Electrostatic discharge in powder‑storage silos: Frequency and energy analysis under various conditions [J]. Journal of Southeast University (English Edition), 2025, 41 (1): 101-108. [doi:10.3969/j.issn.1003-7985.2025.01.013]
Copy

Electrostatic discharge in powder‑storage silos: Frequency and energy analysis under various conditions()
不同条件下料仓荷电粉体静电放电频率及能量释放特性研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 1
Page:
101-108
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2025-03-07

Info

Title:
Electrostatic discharge in powder‑storage silos: Frequency and energy analysis under various conditions
不同条件下料仓荷电粉体静电放电频率及能量释放特性研究
Author(s):
ZHANG Gaoqiang1 LI Liangliang2 LIANG Cai1 MENG He2 LAN Qi2 CHEN Xiaoping1 MA Jiliang1
1.School of Energy and Environment, Southeast University, Nanjing 211189, China
2.SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266100, China
张高强1 李亮亮2 梁财1 孟鹤2 兰琦2 陈晓平1 马吉亮1
1.东南大学能源与环境学院, 南京 211189
2.中石化安全工程研究院, 青岛 266100
Keywords:
electrostatic discharge powder charge‑to‑mass ratio discharge frequency silo
静电放电粉体荷质比放电频率料仓
PACS:
TB126
DOI:
10.3969/j.issn.1003-7985.2025.01.013
Abstract:
To explore the electrostatic discharge behavior of charged powders in industrial silos, discharge experiments are conducted based on a full‑size industrial silo discharge platform. Electrostatic discharge mode, frequency, and energy are investigated for powders of different polarities. Although the powders have low charge‑to‑mass ratios (+0.087 μC/kg for the positively charged powders and -0.26 μC/kg for the negatively charged ones), electrostatic discharges occur approximately every 10 s, with the maximum discharge energy being 800 mJ. Powder polarity considerably influences discharge energy. The positive powders exhibit higher discharge energy than the negative ones, although discharge frequency remains similar for both. Effects of powder charge, humidity, and mass flow on discharge frequency and discharge energy are quantitatively analyzed, providing important insights for the improvement of safety in industrial powder handling.
为探究工业料仓粉体静电放电特性,基于全尺寸工业料仓粉体输送平台进行荷电粉体放电试验研究,获得了料仓粉体静电放电频率及能量释放特性。结果表明,料仓填充正/负极性粉体时,荷质比分别低至+0.087和-0.26 μC/kg,料仓中仍然频繁发生静电放电,且平均放电周期仅约为10 s,最大放电能量达到800 mJ。粉体荷电极性对静电放电能量分布影响显著,在相同的荷质比下,料仓填充正极性粉体时平均放电能量显著高于负极性粉体,但二者放电频率相差不大。定量研究了不同粉体荷质比、空气湿度和粉体质量流量对粉体放电频率以及能量释放的影响,获得了3种条件变化下粉体放电的最大释放能量、平均释放能量以及能量分布特性。

References:

[1]HU J W. Study on charging characteristics and electrostatic effect of moving particles[D]. Nanjing: Southeast University, 2021. (in Chinese)
[2]ZHOU Q. Research on the characteristics of electrostatic distribution of charged powder in silo and regulation method [D]. Nanjing: Southeast University, 2022. (in Chinese)
[3]WU J T, QIU L, JIAO Y, et al. identification and analysis of mixing‑induced homogeneity in reclaimed asphalt pavement materials[J]. Journal of Southeast University (English Edition), 2024, 40(2):193‑202.
[4]FOTOVAT F, BI X T, GRACE J R. A perspective on electrostatics in gas‑solid fluidized beds: Challenges and future research needs[J]. Powder Technology, 2018, 329: 65‑75.
[5]WANG Z, PANG L, SHAO Y J, et al. Experimental study on fluidized attrition characteristics and mechanism of quartz sand particles[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2): 503‑512. (in Chinese)
[6]KONG L Y, ZENG Q L, ZHANG Z Q, et al. Antiskid decay prediction of asphalt mixtures based on aggregate mechanical properties and gradation fractals[J]. Journal of Southeast University (English Edition), 2024, 40(1): 58‑67.
[7]GLOR M. Ignition hazard due to static electricity in particulate processes[J]. Powder Technology, 2003, 135: 223‑233.
[8]FU F F, XU C L, WANG S M, et al. Kinematic characterization of dense‑phase pulverized coal particles for pneumatic conveying based on arrayed electrostatic sensors[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(3): 536‑541. (in Chinese)
[9]EGAN S. Learning lessons from five electrostatic incidents[J]. Journal of Electrostatics, 2017, 88: 183‑189.
[10]LAN Q, LI L L, LIANG C, et al. Experimental study on the effect of vibration charging characteristics of spherical polypropylene particles[J]. Acta Petrolei Sinica, 2022, 38(4): 903‑909.
[11]TAN F G, SONG W, GONG H, et al. Research on the static electricity of petrochemical powder pneumatic conveying and prevention of dust electrostatic explosion[J]. Journal of Physics: Conference Series, 2013, 418: 012026.
[12]LEI B J, YIN Y G, FAN F S. Mechanism of electrostatic field on interface and particle interaction between salt solution and air[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2): 487‑494.(in Chinese)
[13]CARTWRIGHT P, SINGH S, BAILEY A G, et al. Electrostatic charging characteristics of polyethylene powder during pneumatic conveying[J]. IEEE Transactions on Industry Applications, 1985, IA‑21(2): 541‑546.
[14]MAURER B. Discharges resulting from electrostatic charging in large storage silos[J]. Chemical Engineering & Technology, 1979, 51: 98‑103.
[15]GLOR M. Hazards due to electrostatic charging of powders[J]. Journal of Electrostatics, 1985, 16(2/3): 175‑191. DOI: 10.1016/0304‑3886(85)90041‑5.
[16]GLOR M, LÜTTGENS G, MAURER B, et al. Discharges from bulked polymeric granules during the filling of silos—characterization by measurements and influencing factors[J]. Journal of Electrostatics, 1989, 23: 35‑43.
[17]GLOR M, MAURER B. Ignition tests with discharges from bulked polymeric granules in silos (cone discharges)[J]. Journal of Electrostatics, 1993, 30: 123‑133.
[18]CHOI K, ENDO Y, SUZUKI T. Experimental study on electrostatic charges and discharges inside storage silo during loading of polypropylene powders[J]. Powder Technology, 2018, 331: 68‑73.
[19]CHOI K, OSADA Y, ENDO Y, et al. Experimental study on the effect of metal protrusions inside silos on electrostatic discharges[J]. Powder Technology, 2020, 366: 661‑666.
[20]ZHOU Q, LI L L, BI X T, et al. Electrostatic elimination of charged particles by DC‑type bipolar electrostatic eliminator[J]. Powder Technology, 2022, 408: 117774.
[21]ZHANG G Q, LI L L, ZHOU Q, et al. Electrostatic discharge pattern and energy probability distribution of different polarity powders in industrial silo[J]. Chemical Engineering Research and Design, 2023, 192: 91‑101.
[22]ZHANG G Q, WANG Q, LIANG C, et al. Electrostatic discharge mechanisms and dynamic characteristics of different polarity powders in the Silo[J]. Powder Technology, 2024, 441: 119819.
[23]GLOR M, MAURER B, ROGERS R. Ignition tests during filling of different types of flexible intermediate bulk containers (FIBCs) with polymers[J]. Journal of Physics: Conference Series, 1995, 143: 121‑124.
[24]ZHOU Q, HU J W, LIANG C, et al. Study on electric field distribution in cylindrical metal silo containing charged polyethylene powder[J]. Powder Technology, 2019, 353: 145‑155.

Memo

Memo:
Received 2024-09-19,Revised 2024-12-02.
Biographies:Zhang Gaoqiang(1995─), male,Ph.D. candidate; Liang Cai(corresponding author),male,doctor,professor,liangc@seu.edu.cn.
Foundation item:The National Natural Science Foundation of China (No.51976039).
Citation:ZHANG Gaoqiang,LI Liangliang,LIANG Cai,et al.Electrostatic discharge in powder-storage silos: Frequency and energy analysis under various conditions[J].Journal of Southeast University (English Edition),2025,41(1):101-108.DOI:10.3969/j.issn.1003-7985. 2025.01.013.DOI:10.3969/j.issn.1003-7985.2025.01.013
Last Update: 2025-03-20