|Table of Contents|

[1] Zhou Xiaofeng, Zhang Xiaosong, Zhou Jiancheng, et al. Effective thermal and electrical conductivityof graphite nanoplatelet composites [J]. Journal of Southeast University (English Edition), 2013, 29 (2): 158-161. [doi:10.3969/j.issn.1003-7985.2013.02.009]

Effective thermal and electrical conductivityof graphite nanoplatelet composites()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2013 2
Research Field:
Mathematics, Physics, Mechanics
Publishing date:


Effective thermal and electrical conductivityof graphite nanoplatelet composites
Zhou Xiaofeng1 2 Zhang Xiaosong1 Zhou Jiancheng3
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Department of Fundamental Sciences, Yancheng Institute of Technology, Yancheng 224003, China
3School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
graphite nanoplatelet nanofluids thermal conductivity electrical conductivity percolation threshold
The relationship between the thermal/electrical conductivity enhancement in graphite nanoplatelets(GNPs)composites and the properties of filling graphite nanoplatelets is studied. The effective thermal and electrical conductivity enhancements of GNP-oil nanofluids and GNP-polyimide composites are measured. By taking into account the particle shape, the volume fraction, the thermal conductivity of filling particles and the base fluids, the thermal and electrical conductivity enhancements of GNP nanofluids are theoretically predicted by the generalized effective medium theory. Both the nonlinear dependence of effective thermal conductivity on the GNP volume fraction in nanofluids and the very low percolation threshold for GNP-polyimide composites are well predicted. The theoretical predications are found to be in reasonably good agreement with the experimental data. The generalized effective medium theory can be used for predicting the thermal and electrical properties of GNP composites and it is still available for most of the thermal/electrical modifications in two-phase composites.


[1] Novoselov K S. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[2] Novoselov K S. Two-dimensional gas of massless Dirac fermions in grapheme [J]. Nature, 2005, 438(9):197-200.
[3] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in grapheme [J]. Nature, 2005, 438(9): 201-204.
[4] Nair R R. Fine structure constant defines visual transparency of grapheme [J]. Science, 2008, 320(5881):1308-1310.
[5] Balandin A A. Superior thermal conductivity of single-layer grapheme [J]. Nano Letter, 2008, 8(3): 902-907.
[6] Ghosh S. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits [J]. Applied Physics Letter, 2008, 92(15):151911-151913.
[7] Yu A, Itkis M E, Bekyarova E, et al. Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites [J]. Applied Physics Letter, 2006, 89(13):133102-133103.
[8] Aiping Y, Palanisamy R, Mikhail E I, et al. Graphite nanoplatelet-epoxy composite thermal interface materials [J]. Journal of Physics Chemistry Letter C, 2007, 111(75): 7565-7569.
[9] Bryning M B, Islam M F, Kikkawa J M, et al. Conductivity threshold in bulk isotropic single-walled carbon nanotube—epoxy composites [J]. Advanced Materials, 2005, 17(11): 1186-1191.
[10] Ounaies Z, Park C, Wise K E, et al. Carbon nanotube polymer composites [J]. Composites Science Technology, 2003, 63(16): 1637-1646.
[11] Shenogina N, Shenogin S, Xue L, et al. On the lack of thermal percolation in carbon nanotube composites [J]. Applied Physics Letter, 2005, 87(13): 133106-133108.
[12] Foygel M, Morris R D, Anez D, et al. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity [J]. Physical Review B, 2005, 71(10): 104201-104208.
[13] Wang S Y, Wang W, Wang W Z, et al. Preparation and characterization of highly oriented NiO(200)films by a pulse ultrasonic spray pyrolysis method [J]. Science Engineering B, 2002, 90(10): 133-137.
[14] Sheinman M, Broedersz C P, MacKintosh F C, Nonlinear effective-medium theory of disordered spring networks [J]. Physical Review E, 2012, 85(2):021801-021816.
[15] Nan C W, Liu G, Lin Y H, et al. Interface effect on thermal conductivity of carbon nanotube composites [J]. Applied Physics Letter, 2004, 85(35): 3549-3551.
[16] Lin C G, Chung D D L. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials [J]. Carbon, 2009, 47(6): 295-305.
[17] Zhou X F, Wang S Y. Thermal conductivity and insulation modification in asphalt-based composites [J]. Journal of Materials Science and Technology, 2012, 28(3): 285-288.


Biographies: Zhou Xiaofeng(1978—), male, doctor, lecturer, xfzhouphy@263.net;Zhang Xiaosong(1960—), male, doctor, professor, rachpe@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.50906073, 31070517), China Postdoctoral Science Foundation(No.20110491332), Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101009B), the Science and Technology Development Plan of North Jiangsu(No.BC2012444).
Citation: Zhou Xiaofeng, Zhang Xiaosong, Zhou Jiancheng.Effective thermal and electrical conductivity of graphite nanoplatelet composites[J].Journal of Southeast University(English Edition), 2013, 29(2):158-161.[doi:10.3969/j.issn.1003-7985.2013.02.009]
Last Update: 2013-06-20