|Table of Contents|

[1] Wang Rugang, Zhang Xinran, Zhao Li, et al. Tunable photonic microwave generatedby multi-wavelength Brillouin fiber laser [J]. Journal of Southeast University (English Edition), 2017, 33 (1): 22-26. [doi:10.3969/j.issn.1003-7985.2017.01.004]

Tunable photonic microwave generatedby multi-wavelength Brillouin fiber laser()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2017 1
Research Field:
Information and Communication Engineering
Publishing date:


Tunable photonic microwave generatedby multi-wavelength Brillouin fiber laser
Wang Rugang1 2 Zhang Xinran1 Zhao Li1 Zhang Xuping3
1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China
2College of Information Engineering, Yancheng Institute of Technology, Yancheng 224051, China
3Institute of Optical Communication Engineering, Nanjing University, Nanjing 210093, China
Brillouin frequency shift ring laser multi-wavelength microwave signal
Aimed at the problem of narrow tunability and low frequency microwave signal generated by the optical method, a novel approach to stabilizing the tunable photonic microwave generated by the multi-wavelength Brillouin fiber laser is proposed and is experimentally demonstrated. A single-longitudinal-mode Brillouin fiber laser is designed, and by using the laser, a multi-wavelength Brillouin fiber laser with more than eleven orders of Stokes wave is observed. The wavelength spacing of the adjacent Stokes wave is 0.085 nm. If the Brillouin pump power is increased, the number of Stokes wave output can be further increased. The tunable microwave signals of 10.8 and 21.6 GHz are obtained by heterodyning the Rayleigh wave and Stokes wave of the multi-wavelength Brillouin fiber laser. In the experiment, by tuning the pump wavelength and temperature of the gain fiber, microwave signals at different frequencies are generated. The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range, and the generated microwave signal exhibits high stability on frequency.


[1] Yao J. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335. DOI:10.1109/jlt.2008.2009551.
[2] Xiang D, Lu P, Xu Y, et al. Random Brillouin fiber laser for tunable ultra-narrow linewidth microwave generation[J]. Optics Letters, 2016, 41(20): 4839-4842. DOI:10.1364/ol.41.004839.
[3] Gao Y, Wen A, Zheng H, et al. Photonic microwave waveform generation based on phase modulation and tunable dispersion[J]. Optics Express, 2016, 24(12): 12524-12533. DOI:10.1364/oe.24.012524.
[4] Wu B, Wang M, Sun J, et al. Frequency- and phase-tunable optoelectronic oscillator based on a DPMZM and SBS effect[J]. Optics Communications, 2016, 363: 123-127. DOI:10.1016/j.optcom.2015.10.067.
[5] Li J, Yu L. Photonic generation of arbitrary waveform microwave pulse based on tunable optoelectronic oscillator and a dual-drive Mach-Zehnder modulator[J]. Optics Communications, 2016, 363: 161-165. DOI:10.1016/j.optcom.2015.11.020.
[6] Al-Dabbagh R K, Al-Raweshidy H S. Photonic methods of millimeter-wave generation based on Brillouin fiber laser[J]. Optics & Laser Technology, 2016, 79: 124-131. DOI:10.1016/j.optlastec.2015.12.005.
[7] Li Y, Pei L, Li J, et al. Filter-less frequency-doubling microwave signal generator with tunable phase shift[J]. Optics Communications, 2016, 370: 91-97. DOI:10.1016/j.optcom.2016.02.050.
[8] Zhou X, Liu Y, Hu M, et al. Multi-wavelength Brillouin fiber laser with triple Brillouin frequency spacing[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2379-2382. DOI:10.1109/lpt.2016.2594439.
[9] Zhou P, Zhang F, Gao B, et al. Optical pulse generation by an optoelectronic oscillator with optically injected semiconductor laser[J]. IEEE Photonics Technology Letters, 2016, 28(17): 1827-1830. DOI:10.1109/lpt.2016.2573289.
[10] Williams D, Bao X Y, Chen L. Improved all-optical OR logic gate based on combined Brillouin gain and loss in an optical fiber[J]. Chinese Optics Letters, 2014, 12(8): 082001.DOI:10.3788/col201412.082001.
[11] Zhu T, Zhang B, Shi L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering[J]. Optics Express, 2016, 24(2): 1324-1330. DOI:10.1364/cleo-at.2016.jtu5a.118.
[12] Peng H F, Zhang C, Xie X P. Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated brillouin scattering [J]. Journal of Lightwave Technology, 2015, 33(13): 2707-2715.
[13] Wang R G, Zhang X P, Hu J H, et al. Photonic generation of tunable microwave signal using brillouin fiber laser[J]. Applied Optics, 2012, 51(8): 1028-1032. DOI:10.1364/ao.51.001028.
[14] Chen M, Meng Z, Tu X B, et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 2013, 38(12): 2041-2043. DOI:10.1364/ol.38.002041.


Biographies: Wang Rugang(1975—), male, doctor, associate professor; Zhao Li(corresponding author), male, doctor, professor, zhaoli@seu.edu.cn.
Foundation items: China Postdoctoral Science Foundation(No.2015M571637), the National Natural Science Foundation of China(No.61673108), the Program for Special Talent in Six Fields of Jiangsu Province(No.DZXX-028), the Industry, Education and Research Prospective Project of Jiangsu Province(No.BY2015057-39, BY2016065-03).
Citation: Wang Rugang, Zhang Xinran, Zhao Li, et al.Tunable photonic microwave generated by multi-wavelength Brillouin fiber laser[J].Journal of Southeast University(English Edition), 2017, 33(1):22-26.DOI:10.3969/j.issn.1003-7985.2017.01.004.
Last Update: 2017-03-20