[1] Breitung K. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984, 110(3):357-366. DOI:10.1061/(asce)0733-9399(1984)110:3(357).
[2] Cai G Q, Elishakoff I. Refined second-order reliability analysis[J]. Structural Safety, 1994, 14(4):267-276. DOI:10.1016/0167-4730(94)90015-9.
[3] Low B K, Einstein H H. Reliability analysis of roof wedges and rockbolt forces in tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38:1-10. DOI:10.1016/j.tust.2013.04.006.
[4] Chan C L, Low B K. Practical second-order reliability analysis applied to foundation engineering[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(11):1387-1409. DOI:10.1002/nag.1057.
[5] Plotnikov M Y, Shkarupa E V. Estimating the statistical error in calculating velocity and temperature components by the direct simulation Monte Carlo method[J]. Numerical Analysis & Applications, 2016, 9(3):246-256. DOI:10.1134/s199542391603006x.
[6] Guo T, Li A Q, Miao C Q. Monte Carlo numerical simulation and its application in probability analysis of long span bridges [J]. Journal of Southeast University(English Edition), 2005, 21(4): 469-473.
[7] Zhang H, Dai H, Beer M, et al. Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method[J]. Mechanical Systems and Signal Processing, 2013, 37(1/2):137-151. DOI:10.1016/j.ymssp.2012.03.001.
[8] Echard B, Gayton N, Lemaire M, et al. A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering & System Safety, 2013, 111(2):232-240. DOI:10.1016/j.ress.2012.10.008.
[9] Kuznetsov N Y, Homyak O N. Evaluation of the probability of functional failure of a redundant system by importance sampling method[J]. Cybernetics and Systems Analysis, 2014, 50(4):538-547. DOI:10.1007/s10559-014-9642-4.
[10] Dubourg V, Sudret B. Meta-model-based importance sampling for reliability sensitivity analysis[J]. Structural Safety, 2014, 49(10):27-36. DOI:10.1016/j.strusafe.2013.08.010.
[11] Wang X Y, Cen S, Li C F, et al. A priori, error estimation for the stochastic perturbation method[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286(3):1-21. DOI:10.1016/j.cma.2014.11.044.
[12] Huang B, Li Q S, Shi W H, et al. Eigenvalues of structures with uncertain elastic boundary restraints[J]. Applied Acoustics, 2007, 68(3):350-363. DOI:10.1016/j.apacoust.2006.01.012.
[13] Beddek K, Clenet S, Moreau O, et al. Spectral stochastic finite element method for solving 3D stochastic eddy current problems[J]. International Journal of Applied Electromagnetics & Mechanics, 2012, 39(1):753-760.
[14] Ghosh D. Probabilistic interpretation of conjugate gradient iterations in spectral stochastic finite element method[J]. AIAA Journal, 2014, 52(6):1313-1316. DOI:10.2514/1.j052769.
[15] Nair P B, Keane A J. Stochastic reduced basis methods[J]. AIAA Journal, 2012, 40(8):1653-1664. DOI:10.2514/3.15243.
[16] Sachdeva S K, Nair P B, Keane A J. Comparative study of projection schemes for stochastic finite element analysis[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(19/20/21/22):2371-2392. DOI:10.1016/j.cma.2005.05.010.
[17] Huang B, Li Q S, Tuan A Y, et al. Recursive approach for random response analysis using non-orthogonal polynomial expansion[J]. Computational Mechanics, 2009, 44(3):309-320. DOI:10.1007/s00466-009-0375-6.
[18] Huang B, Liu W, Qu W. Recursive stochastic finite element method[C]//Proceedings of the 8th International Symposium on Structural Engineering for Young Experts. Xi’an, China, 2004: 155-160.
[19] Huang B, Zhu L P, Seresh R F. Statistical analysis of dynamic characteristics of large span cable-stayed bridge based on the recursive stochastic finite element method [C]// Proceedings of the 12th International Symposium on Structural Engineering. Wuhan, China, 2012: 440-448.