|Table of Contents|

[1] Cao Qingqing, Liu Xiuyu, Wang Hao, Huang Xiaoming, et al. Simulation and analysis of two-point bending fatigue testof asphalt concrete based on discrete element model [J]. Journal of Southeast University (English Edition), 2017, 33 (3): 286-292. [doi:10.3969/j.issn.1003-7985.2017.03.006]

Simulation and analysis of two-point bending fatigue testof asphalt concrete based on discrete element model()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2017 3
Research Field:
Traffic and Transportation Engineering
Publishing date:


Simulation and analysis of two-point bending fatigue testof asphalt concrete based on discrete element model
Cao Qingqing1 Liu Xiuyu1 Wang Hao2 Huang Xiaoming1
1School of Transportation, Southeast University, Nanjing 210096, China
2Department of Civil and Environmental Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
high modulus asphalt concrete numerical simulation Burger’s parameters fatigue life
In order to investigate the fatigue performance of French high modulus asphalt concrete and the correlation between Burger’s parameters and fatigue life, the virtual model of asphalt mixture trapezoidal specimen in the two-point bending fatigue test was constructed in discrement element software PFC3D. The initial stiffness and the maximum stress when the specimen reached fatigue were calculated. Through the comparison between virtual and single field fatigue test curves, the credibility of simulation in DEM was verified. Then, the impacts of top controlled displacement and Burger’s parameters(E1, E2, η1, η2)on the fatigue life of the specimen were explored. The simulation results indicate that the maximum stress increases with the increase in the top controlled displacement. With the increase of E1 and the decrease of E2 in Burger’s model, the modulus of the asphalt binder increases, and the fatigue performance of the asphalt mixture enhances. η1 and η2 have limited influence on fatigue life compared with E1 and E2.


[1] Diefenderfer B K, Maupin G W Jr. Field trials of high-modulus high-binder-content base layer hot-mix asphalt mixtures[J/OL]. Biotechniques, 2010, 27(3). https://trid.trb.org/view.aspx?id=986723.
[2] Denneman E, Petho L, Verhaeghe B, et al. High modulus asphalt(EME)technology transfer to South Africa and Australia: Shared experiences[C/OL]//Conference on Asphalt Pavements for Southern Africa. Pilanesberg, South Africa, 2015. http://researchspace.csir.co.za/dspace/bitstream/handle/10204/8248/Verhaeghe_2015.pdf?sequence=1&isAllowed=y.
[3] Geng H, Clopotel C S, Bahia H U. Effects of high modulus asphalt binders on performance of typical asphalt pavement structures[J]. Construction and Building Materials, 2013, 44: 207-213. DOI:10.1016/j.conbuildmat.2013.03.035.
[4] Corté J F. Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in France[J]. Transportation Research Circular, 2001, 503: 12-31.
[5] Hernández M I G. High modulus asphalt concrete: A long life asphalt pavement[J/OL]. Journal of Civil & Environmental Engineering, 2015. http:// dx.doi.org/10.4172/2165-784X.1000188.DOI:10.4172/2165-784x.1000188.
[6] Airey G D, Choi Y K, Collop A C, et al. Combined laboratory ageing/moisture sensitivity assessment of high modulus base asphalt mixtures(with discussion)[C]//2005 Journal of the Association of Asphalt Paving Technologists: From the Proceedings of the Technical Sessions. Long Beach, CA, USA, 2005, 74:307-345.
[7] Ma T, Wang H, Huang X M, et al. Laboratory performance characteristics of high modulus asphalt mixture with high-content RAP[J]. Construction and Building Materials, 2015, 101: 975-982. DOI:10.1016/j.conbuildmat.2015.10.160.
[8] Benta A, Duarte C, Almeida-Costa A, et al. Design and performance of a warm high-modulus asphalt concrete[J]. Journal of Cleaner Production, 2015, 95: 55-65. DOI:10.1016/j.jclepro.2015.02.057.
[9] Zhang X N, Yang P. Finite element analysis of high modulus asphalt pavement[J]. International Journal of Advancements in Computing Technology, 2012, 4(2): 72-79.
[10] Zheng M L, Han L L, Qiu Z P, et al. Simulation of permanent deformation in high-modulus asphalt pavement using the Bailey-Norton creep law[J]. Journal of Materials in Civil Engineering, 2016, 28(7):04016020. DOI:10.1061/(asce)mt.1943-5533.0001511.
[11] Ullidtz P. Distinct element method for study of failure in cohesive particulate media[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1757:127-133. DOI:10.3141/1757-15.
[12] Buttlar W, You Z. Discrete element modeling of asphalt concrete: Microfabric approach[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1757:111-118. DOI:10.3141/1757-13.
[13] Liu Y, Dai Q L, You Z P. Viscoelastic model for discrete element simulation of asphalt mixtures[J]. Journal of Engineering Mechanics, 2009, 135(4):324-333. DOI:10.1061/(asce)0733-9399(2009)135:4(324).
[14] Chen J, Huang X M. Simulation of fracture process of asphalt mixture using three-dimension discrete element method[J]. Journal of South China University of Technology(Natural Science Edition), 2012, 40(7): 21-26.(in Chinese)
[15] British Standards Institution. BS EN 12697-24 Bituminous mixtures—test methods for hot mix asphalt—Part 24:Resistance to fatigue[S]. London: European Committee for Standardization, 2004.
[16] Bodin D, de La Roche C, Chabot A. Prediction of bituminous mixes fatigue behavior during laboratory fatigue tests[C]//Proceedings of the 3rd Eurasphalt and Eurobitume Congress. Vienna, Austria, 2004: 1935-1945.
[17] Cheng J, Zhang D, Huang X M. Application of discrete element particle flow software in road engineering[M]. Beijing:China Communications Press, 2015: 110-114.(in Chinese)
[18] Komba J J, Maina J W, Anochie-Boateng J K, et al. Analytical modelling of visco-elastic behaviour of hot-mix asphalt[C/OL]//Southern African Transportation Conference. Pretoria, South Africa, 2012. https://researchspace.csir.co.za/dspace/bitstream/handle/10204/6037/Komba_2012.pdf?sequence=1&isAllowed=y.
[19] Cocurullo A, Airey G D, Collop A C, et al. Indirect tensile versus two-point bending fatigue testing[J]. Proceedings of the Institution of Civil Engineers—Transport, 2008, 161(4): 207-220. DOI:10.1680/tran.2008.161.4.207.
[20] He X Y, Yan J H. The application of high modulus asphalt technology[J]. Transpo World, 2009(7): 182-189.(in Chinese)
[21]Wu J W, Bai Y F, Collop A C, et al. Numerical simulation of uniaxial compression test for asphalt mortar with discrete element method[J]. Highway, 2012(3): 193-197.(in Chinese)
[22] Lee H J, Lee J H, Park H M. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements[J]. Construction and Building Materials, 2007, 21(5): 1079-1087.DOI:10.1016/j.conbuildmat.2006.01.003.


Biographies: Cao Qingqing(1993—), female, graduate; Huang Xiaoming(corresponding author), male, doctor, professor, huangxm@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 51378121).
Citation: Cao Qingqing, Liu Xiuyu, Wang Hao, et al. Simulation and analysis of two-point bending fatigue test of asphalt concrete based on discrete element model[J].Journal of Southeast University(English Edition), 2017, 33(3):286-292.DOI:10.3969/j.issn.1003-7985.2017.03.006.
Last Update: 2017-09-20