|Table of Contents|

[1] Zhang Hui, Zhang Zhisheng,. Phase transitions of dielectric elastomers in a circular frame [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 387-390. [doi:10.3969/j.issn.1003-7985.2017.04.001]

Phase transitions of dielectric elastomers in a circular frame()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2017 4
Research Field:
Mechanical Engineering
Publishing date:


Phase transitions of dielectric elastomers in a circular frame
Zhang Hui1 2 Zhang Zhisheng1
1School of Mechanical Engineering, Southeast University, Nanjing 210096, China
2Department of Mechanical Engineering, National University of Singapore, Singapore 117576
phase transition dielectric elastomer wrinkle circular frame
In order to imitate biological adhesion performance and skin properties, phase transitions on dielectric elastomers(DE)with high voltages are studied. The states of flat, wrinkled and bulging on the circular active area which is coated with electrodes verify the theoretical prediction of phase transitions and failure phenomena. When the DE membrane is subjected to a radial force and increasing voltage, four experimental phenomena are discovered before electric breakdown: The active region expands, and the thin membrane is still flat till breakdown; bulging forms instead of a flat area on the membrane; wrinkles and bulging coexist; and the active area is completely wrinkled. In the fourth state, there are two types of phase transitions between the flat and wrinkled regions in a membrane: Wrinkles form in small regions, and then propagate at the expense of the flat area until the entire active part becomes wrinkled; both the wrinkled and flat regions move interchangeably on a membrane with ramping voltage till breakdown. It is found that when there is no prestretch of a DE membrane, bulging will occur with the increasing voltage. Wrinkles commonly appear at large prestretch and, therefore, the prestretched ratio significantly affects electromechanical phase transitions.


[1] Zhao X H, Suo Z G. Theory of dielectric elastomers capable of giant deformation of actuation[J]. Physical Review Letters, 2010, 104(17): 178302. DOI:10.1103/PhysRevLett.104.178302.
[2] Shen X, Ji S, Chen Y. Manufacture of large displacement antiferroelectric ceramic and its properties [J]. Journal of Southeast University(English Edition), 2004, 20(2): 205-208.
[3] Zhu J, Kollosche M, Lu T, et al. Two types of transitions to wrinkles in dielectric elastomers[J]. Soft Matter, 2012, 8(34): 8840-8846. DOI:10.1039/c2sm26034d.
[4] Chan E P, Smith E J, Hayward R C, et al. Surface wrinkles for smart adhesion[J]. Advanced Materials, 2008, 20(4): 711-716. DOI:10.1002/adma.200701530.
[5] Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311(5758): 208-212. DOI:10.1126/science.1121401.
[6] Mockensturm E M, Goulbourne N. Dynamic response of dielectric elastomers[J]. International Journal of Non-Linear Mechanics, 2006, 41(3): 388-395. DOI:10.1016/j.ijnonlinmec.2005.08.007.
[7] Zhao X H, Suo Z G. Method to analyze electromechanical stability of dielectric elastomers[J]. Applied Physics Letters, 2007, 91(6): 061921. DOI:10.1063/1.2768641.
[8] Sun W F, Sun Z L, Yi Y B, et al. Gate breakdown of high-voltage P-LDMOS and improved methods [J]. Journal of Southeast University(English Edition), 2006, 20(1): 35-38.
[9] Plante J S, Dubowsky S. Large-scale failure modes of dielectric elastomer actuators[J]. International Journal of Solids and Structures, 2006, 43(25): 7727-7751. DOI:10.1016/j.ijsolstr.2006.03.026.
[10] Keplinger C, Kaltenbrunner M, Arnold N, et al. Capacitive extensometry for transient strain analysis of dielectric elastomer actuators[J]. Applied Physics Letters, 2008, 92: 192903.
[11] Mao G, Huang X, Diab M, et al. Nucleation and propagation of voltage-driven wrinkles in an inflated dielectric elastomer balloon[J]. Soft Matter, 2015, 11(33): 6569-6575. DOI:10.1039/c5sm01102g.
[12] Koh S J A, Li T F, Zhou J X, et al. Mechanisms of large actuation strain in dielectric elastomers[J]. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(7): 504-515. DOI:10.1002/polb.22223.
[13] Godaba H, Zhang Z Q, Gupta U, et al. Dynamic pattern of wrinkles in a dielectric elastomer[J]. Soft Matter, 2017, 13(16): 2942-2951. DOI:10.1039/c7sm00198c.


Biographies: Zhang Hui(1987—), female, graduate; Zhang Zhisheng(corresponding author), male, doctor, professor, oldbc@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China No.51775108).
Citation: Zhang Hui, Zhang Zhisheng. Phase transitions of dielectric elastomers in a circular frame[J].Journal of Southeast University(English Edition), 2017, 33(4):387-390.DOI:10.3969/j.issn.1003-7985.2017.04.001.
Last Update: 2017-12-20