|Table of Contents|

[1] Yan Chunni, Huang Juan, Yang Sisi, Cao Chong, et al. Nitrification intensity and ammonia-oxidizing bacteria and archaeain different wetland plant rhizosphere soils [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 466-472. [doi:10.3969/j.issn.1003-7985.2017.04.012]

Nitrification intensity and ammonia-oxidizing bacteria and archaeain different wetland plant rhizosphere soils()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2017 4
Research Field:
Environmental Science and Engineering
Publishing date:


Nitrification intensity and ammonia-oxidizing bacteria and archaeain different wetland plant rhizosphere soils
Yan Chunni Huang Juan Yang Sisi Cao Chong Peng Cheng Li Runqing
School of Civil Engineering, Southeast University, Nanjing 210096, China
wetland plant rhizosphere nitrification intensity ammonia-oxidizing bacteria ammonia-oxidizing archaea fluorescence in situ hybridization
In order to explore the nitrogen removal process in constructed wetlands(CWs), the moisture, ammonia nitrogen(NH4+-N), nitrate nitrogen(NO-3-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorus calamus, Typha orientalis, Iris pseudacorus)were investi-gated at a relatively normal temperature range of 15 to 25 ℃. The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH). It is found that T.orientalis achieves the highest nitrification intensity of 2.03 mg/(h ·kg)while the second is I.pseudacorus(1.74 mg/(h ·kg)), and followed by A.calamus(1.65 mg/(h ·kg))throughout the experiment. FISH reveals that the abundance of bacteria(1010 g-1 wet soil)is higher than that of archaea(109 g-1 wet soil), and AOB are the dominant bacteria in the ammonia oxidation process. The abundance of AOB in the rhizosphere soils from high to low are T.orientalis(1.88×1010g-1), I.pseudacorus(1.23×1010 g-1), A.calamus(5.07×109 g-1)while the abundance of AOA from high to low are I.pseudacorus(4.00×109 g-1), A.calamus(3.52×109 g-1), T.orientalis(3.48×109 g-1). The study provides valuable evidence of plant selection for nitrogen removal in CWs.


[1] Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media [J]. Journal of Environmental Management, 2012, 112: 429-448. DOI:10.1016/j.jenvman.2012.08.011.
[2] Gikas G D, Tsihrintzis V A. A small-size vertical flow constructed wetland for on-site treatment of household wastewater [J]. Ecological Engineering, 2012, 44: 337-343. DOI:10.1016/j.ecoleng.2012.04.016.
[3] Wu S, Kuschk P, Brix H, et al. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review [J]. Water Research, 2014, 57: 40-55. DOI:10.1016/j.watres.2014.03.020.
[4] Badhe N, Saha S, Biswas R, et al. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland [J]. Bioresource Technology, 2014, 169: 596-604. DOI:10.1016/j.biortech.2014.07.050.
[5] Zeng F, Chen S, Miao Y, et al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress [J]. Environmental Pollution, 2008, 155(2): 284-289. DOI:10.1016/j.envpol.2007.11.019.
[6] Peralta R M, Ahn C, Gillevet P M. Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands [J]. Science of the Total Environment, 2013, 443: 725-732. DOI:10.1016/j.scitotenv.2012.11.052.
[7] Fang C W, Radosevich M, Fuhrmann J J. Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses [J]. Soil Biology & Biochemistry, 2001, 33(4): 679-682. DOI:10.1016/s0038-0717(00)00215-7.
[8] Vacca G, Wand H, Nikolausz M, et al. Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands [J]. Water Research, 2005, 39(7): 1361-1373. DOI:10.1016/j.watres.2005.01.005.
[9] Caffrey J M, Bano N, Kalanetra K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia [J]. The ISME Journal, 2007, 1: 660-662. DOI:10.1038/ismej.2007.79.
[10] Trias R, Ruiz-Rueda O, Garcia-Lledo A, et al. Emergent macrophytes act selectively on ammonia-oxidizing bacteria and archaea [J]. Applied and Environmental Microbiology, 2012, 78(17): 6352-6356. DOI:10.1128/aem.00919-12.
[11] Fan L, Chen H, Hsieh H, et al. Comparing abundance, composition and environmental influences on prokaryotic ammonia oxidizers in two subtropical constructed wetlands[J]. Ecological Engineering, 2016, 90: 336-346. DOI:10.1016/j.ecoleng.2016.01.034.
[12] Lam P, Jensen M M, Lavik G, et al. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 7104-7109. DOI:10.1073/pnas.0611081104.
[13] Jiang H C, Dong H L, Yu B S, et al. Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, Northwestern China [J]. Geomicrobiology Journal, 2009, 26(3): 199-211. DOI:10.1080/01490450902744004
[14] Bollmann A, Bullerjahn G S, Mckay R M. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior [J]. Plos One, 2014, 9(5): e97068. DOI:10.1371/journal.pone.0097068
[15] Di H J, Cameron K C, Shen J P, et al. A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea [J]. Soil Use and Management, 2009, 25(4): 454-461. DOI:10.1111/j.1475-2743.2009.00241.x.
[16] Laverman A M, Speksnijder A G, Braster M, et al. Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil [J]. Microbial Ecology, 2001, 42(1): 35-45. DOI:10.1007/s002480000038.
[17] Wang Y, Ke X, Wu L, et al. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization [J]. Systematic and Applied Microbiology, 2009, 32(1): 27-36. DOI:10.1016/j.syapm.2008.09.007.
[18] Huang J, Cai W S, Zhong Q S, et al. Influence of temperature on micro-environment, plant eco-physiology and nitrogen removal effect in subsurface flow constructed wetland [J]. Ecological Engineering, 2013, 60: 242-248. DOI:10.1016/j.ecoleng.2013.07.023.
[19] Lorenzen J, Larsen L, Kjaer T, et al. Biosensor determination of the microscale distribution of nitrate, nitrate assimilation [J]. Applied and Environmental Microbiology, 1998, 64(9): 3264-3269.
[20] Domingues M R, Araujo J C, Varesche M B, et al. Evaluation of thermophilic anaerobic microbial consortia using fluorescence in situ hybridization(FISH)[J]. Water Science and Technology, 2002, 45(10): 27-33.
[21] Amann R, Fuchs B M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques [J]. Nature Reviews Microbiology, 2008, 6(5): 339-348. DOI:10.1038/nrmicro1888.
[22] WiléB M, Onuki M, Hermansson M, et al. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability [J]. Water Research, 2008, 42(8/9): 2300-2308. DOI:10.1016/j.watres.2007.12.013.
[23] Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria [J]. Applied and Environmental Microbiology, 2002, 68(6): 3094-3101. DOI:10.1128/aem.68.6.3094-3101.2002.
[24] Pichon D, Gaia V, Norman M D, et al. Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids(Cephalopoda: Loliginidae and Idiosepiidae)[J]. Marine Biology, 2005, 147(6): 1323-1332. DOI:10.1007/s00227-005-0014-5.
[25] Schramm A, De B D, Gieseke A, et al. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm [J]. Environmental Microbiology, 2000, 2(6): 680-686. DOI:10.1046/j.1462-2920.2000.00150.x.
[26] Teira E, Reinthaler T, Pernthaler A, et al. Combining catalyzed reporter deposition-dluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean [J]. Applied and Environmental Microbiology, 2004, 70(7): 4411-4414. DOI:10.1128/AEM.70.7.4411-4414.2004.
[27] Chang J J, Wu S Q, Dai Y R, et al. Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater [J]. Ecological Engineering, 2012, 44: 152-159. DOI:10.1016/j.ecoleng.2012.03.019.
[28] Vymazal J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development [J]. Water Research, 2013, 47(14): 4795-4811. DOI:10.1016/j.watres.2013.05.029.
[29] Wang R, Baldy V, Perissol C, et al. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations [J]. Journal of environmental management, 2012, 95(Suppl): 158-164. DOI:10.1016/j.jenvman.2011.03.021.
[30] Deng H, Ge L, Xu T, et al. Analysis of the metabolic utilization of carbon sources and potential functional diversity of the bacterial community in lab-scale horizontal subsurface-flow constructed wetlands [J]. Journal of Environmental Quality, 2011, 40(6): 17301736. DOI:10.2134/jeq2010.0322.
[31] Prosser J I, Nicol G W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation [J]. Trends in Microbiology, 2012, 20(11): 523-531. DOI:10.1016/j.tim.2012.08.001.
[32] Yao H, Campbell C D, Chapman S J, et al. Multi-factorial drivers of ammonia oxidizer communities: Evidence from a national soil survey [J]. Environmental Microbiology, 2013, 15(9): 2545-2556. DOI:10.1111/1462-2920.12141.
[33] Cubry-Rangin C, Nicol G W, Prosser J I. Archaea rather than bacteria control nitrification in two agricultural acidic soils [J]. Fems Microbiology Ecology, 2010, 74(3): 566-574. DOI:10.1111/j.1574-6941.2010.00971.x.
[34] Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: A review [J]. Hydrobiologia, 2011, 674(1): 133-156. DOI:10.1007/s10750-011-0738-9.
[35] Oved T, Shaviv A, Goldrath T, et al. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil [J]. Applied and Environmental Microbiology, 2001, 67(8): 3426-3433. DOI:10.1128/aem.67.8.3426-3433.2001.
[36] Strauss S L, Reardon C L, Mazzola M. The response of ammonia-oxidizer activity and community structure to fertilizer amendment of orchard soils [J]. Soil Biology and Biochemistry, 2014, 68: 410-418. DOI:10.1016/j.soilbio.2013.10.016.
[37] Stefanakis A I, Tsihrintzis V A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands [J]. Chemical Engineering Journal, 2012, 181: 416-430. DOI:10.1016/j.cej.2011.11.108.


Biographies: Yan Chunni(1989—), female, master; Huang Juan(corresponding author), female, doctor, professor, 101010942@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51479034, 50909019), the Fundamental Research Funds for the Central Universities.
Citation: Yan Chunni, Huang Juan, Yang Sisi, et al. Nitrification intensity and ammonia-oxidizing bacteria and archaea in different wetland plant rhizosphere soils[J].Journal of Southeast University(English Edition), 2017, 33(4):466-472.DOI:10.3969/j.issn.1003-7985.2017.04.012.
Last Update: 2017-12-20