|Table of Contents|

[1] Xu Feihong, Xu Zhaodong, Guo Yingqing, Zhang Xiangcheng, et al. Modeling and control of MR damper considering trapped air effect [J]. Journal of Southeast University (English Edition), 2018, (1): 54-61. [doi:10.3969/j.issn.1003-7985.2018.01.009]
Copy

Modeling and control of MR damper considering trapped air effect()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2018 1
Page:
54-61
Research Field:
Civil Engineering
Publishing date:
2018-03-20

Info

Title:
Modeling and control of MR damper considering trapped air effect
Author(s):
Xu Feihong1 Xu Zhaodong1 Guo Yingqing2 Zhang Xiangcheng3 Zhao Yuliang1
1Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing 210096, China
2Nanjing Dongrui Damping Control Technology Co., Ltd, Nanjing 210033, China
3School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
Keywords:
magnetorheological damper performance test air pocket force lag semi-active control
PACS:
TU352
DOI:
10.3969/j.issn.1003-7985.2018.01.009
Abstract:
Due to the high viscosity of magnetorheological(MR)fluid, eliminating air pockets dissolved in the fluid is very difficult, which results in a force lag phenomenon. In order to evaluate the performance of a semi-active control system based on the MR damper considering the trapped air effect, a performance test on a MR damper is carried out under different loading cases, and the influence of the input current, excitation amplitude and frequency on the force lag phenomenon is analyzed. A concise and efficient parametric model, combining the simple Bouc-Wen model and a spring with small stiffness, is proposed to portray the experimental characteristics of the MR damper with force lag, and then the response analysis of the semi-active controlled single-degree-of-freedom(SDOF)structure is performed using the classic clipped-optimal control strategy based on acceleration feedback. Numerical results show that the trapped air in the MR fluid can weaken the control effect of the MR damper, and the performance of the semi-active control system will be reduced more obviously and become close to the passive-off control with the increasing content of air trapped in the MR fluid.

References:

[1] Carlson J D, Catanzarite D M, Stclair K A. Commercial magneto-rheological fluid devices [J]. International Journal of Modern Physics B, 1996, 10(23): 2857-2865. DOI:10.1142/s0217979296001306.
[2] Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction [J]. Smart Materials and Structures, 1996, 5(5): 565-575. DOI:10.1088/0964-1726/5/5/006.
[3] Xu Z D, Shen Y P, Guo Y Q. Semi-active control of structures incorporated with magnetorheological dampers using neural networks [J]. Smart Materials and Structures, 2003, 12(1):80-87. DOI:10.1088/0964-1726/12/1/309.
[4] Xu Z D, Guo Y Q. Fuzzy control method for earthquake mitigation structures with magnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(10):871-881. DOI:10.1177/1045389x06061044.
[5] Xu Z D, Xu F H, Chen X. Intelligent vibration isolation and mitigation of a platform by using MR and VE devices [J]. Journal of Aerospace Engineering, 2016, 29(4): 1-10. DOI:10.1061/(asce)as.1943-5525.0000604.
[6] Jung H J, Choi K M, Spencer B F, et al. Application of some semi-active control algorithms to a smart base-isolated building employing MR dampers [J]. Structural Control and Health Monitoring, 2006, 13(2/3): 693-704. DOI:10.1002/stc.106.
[7] Gordaninejad F, Kelso S P. Fail-safe magneto-rheological fluid dampers for off-highway, high-payload vehicles [J]. Journal of Intelligent Material Systems and Structures, 2000, 11(5): 395-406. DOI:10.1106/K90W-1A63-7QA7-6EH4.
[8] Zheng J J, Wang X J, Ouyang Q, et al. Modeling and characterization of novel magnetorheological(MR)cell with individual currents [J]. Journal of Central South University, 2015, 22(7): 2557-2567. DOI:10.1007/s11771-015-2785-2.
[9] Phillips R W. Engineering applications of fluids with a variable yield stress [D]. Berkeley: University of California, 1969.
[10] Wang X, Gordaninejad F. Flow analysis of field-controllable, electro-and magneto-rheological fluids using Herschel-Bulkley model [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(8): 601-608. DOI:10.1106/p4fl-l1el-yflj-btre.
[11] Lee D Y, Wereley N M. Quasi-steady Herschel-Bulkley analysis of electroand magneto-rheological flow mode dampers [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(10): 761-769. DOI:10.1106/e3lt-lyn6-kmt2-vjjd.
[12] Yang G Q, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers: Modeling and dynamic performance considerations [J]. Engineering Structures, 2002, 24(3): 309-323. DOI:10.1016/s0141-0296(01)00097-9.
[13] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers [J]. Journal of Engineering Mechanics, 1997, 123(3): 230-238. DOI:10.1061/(asce)0733-9399(1997)123:3(230).
[14] Wang E R, Ma X Q, Rakhela S, et al. Modelling the hysteretic characteristics of a magnetorheological fluid damper [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(7): 537-550. DOI:10.1243/095440703322114924.
[15] Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization [J]. Sensors and Actuators A: Physical, 2006, 132(2): 441-451. DOI:10.1016/j.sna.2006.03.015.
[16] Zhou Q, Nielsen S R, Qu W L. Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers [J]. Journal of Sound and Vibration, 2006, 296(1): 1-22. DOI:10.1016/j.jsv.2005.10.028.
[17] Xu Z D, Jia D H, Zhang X C. Performance tests and mathematical model considering magnetic saturation for magnetorheological damper [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(12): 1331-1349. DOI:10.1177/1045389x12445629.
[18] Wang D H, Liao W H. Magnetorheological fluid dampers: A review of parametric modelling [J]. Smart Materials and Structures, 2011, 20(2): 023001. DOI:10.1088/0964-1726/20/2/023001.
[19] Yang G Q. Large-scale magnetorheological fluid damper for vibration mitigation: Modeling, testing and control [D]. Notre Dame: University of Notre Dame, 2001.
[20] Guo P F, Guan X C, Ou J P. Physical modeling and design method of the hysteretic behavior of magnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures, 2013, 25(6): 680-696. DOI:10.1177/1045389X13500576.
[21] Jansen L M, Dyke S J. Semiactive control strategies for MR dampers: Comparative study [J]. Journal of Engineering Mechanics, 2000, 126(8): 795-803. DOI:10.1061/(asce)0733-9399(2000)126:8(795).
[22] Yi F, Dyke S J, Caicedo J M, et al. Experimental verification of multiinput seismic control strategies for smart dampers [J]. Journal of Engineering Mechanics, 2001, 127(11): 1152-1164. DOI:10.1061/(asce)0733-9399(2001)127:11(1152).
[23] Tan P, Dyke S J, Richardson A, et al. Integrated device placement and control design in civil structures using genetic algorithms [J]. Journal of Structural Engineering, 2005, 131(10): 1489-1496. DOI:10.1061/(asce)0733-9445(2005)131:10(1489).
[24] Dyke S J, Spencer B F, Quast P, et al. Role of control-structure interaction in protective system design [J]. Journal of Engineering Mechanics, 1995, 121(2): 322-338. DOI:10.1061/(asce)0733-9399(1995)121:2(322).
[25] Dyke S J, Spencer B F, Quast P, et al. Acceleration feedback control of MDOF structures [J]. Journal of Engineering Mechanics, 1996, 122(9): 907-918. DOI:10.1061/(asce)0733-9399(1996)122:9(907).

Memo

Memo:
Biographies: Xu Feihong(1989—), male, Ph.D.candidate;Xu Zhaodong(corresponding author), male, doctor, professor, xuzhdgyq@seu.edu.cn.
Foundation items: The National Science Fund for Distinguished Young Scholars(No.51625803), China and Korea International Cooperation Project of the National Key Research and Development Program(No.2016YEE0119700), the Fundamental Research Funds for the Central Universities(No.3205008102), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CE02-2-33), Research and Innovation Project for College Graduates of Jiangsu Province(No.KYLX15_0088, KYLX16_0255), the State Foundation for Studying Abroad, China.
Citation: Xu Feihong, Xu Zhaodong, Guo Yingqing, et al. Modeling and control of MR damper considering trapped air effect [J].Journal of Southeast University(English Edition), 2018, 34(1):54-61.DOI:10.3969/j.issn.1003-7985.2018.01.009.
Last Update: 2018-03-20