|Table of Contents|

[1] Wang Hongxing, Chen Jianlong, Yan Guanjie, et al. Generalized Cayley-Hamilton theoremfor core-EP inverse matrix and DMP inverse matrix [J]. Journal of Southeast University (English Edition), 2018, (1): 135-138. [doi:10.3969/j.issn.1003-7985.2018.01.019]
Copy

Generalized Cayley-Hamilton theoremfor core-EP inverse matrix and DMP inverse matrix()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2018 1
Page:
135-138
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2018-03-20

Info

Title:
Generalized Cayley-Hamilton theoremfor core-EP inverse matrix and DMP inverse matrix
Author(s):
Wang Hongxing1 2 Chen Jianlong1 Yan Guanjie2
1School of Mathematics, Southeast University, Nanjing 211189, China
2School of Science, Guangxi University for Nationalities, Nanning 530006, China
Keywords:
Cayley-Hamilton theorem characteristic equation Drazin inverse Drazin-Moore-Penrose(DMP)inverse core-EP inverse
PACS:
O151.2
DOI:
10.3969/j.issn.1003-7985.2018.01.019
Abstract:
By using the classical Cayley-Hamilton theorem, the polynomial equations of the core-EP inverse matrix and Drazin-Moore-Penrose(DMP)inverse matrix are given, respectively. If the characteristic polynomial of the singular matrix A, pA(s)=det(sEnn-A)=sn+an-1sn-1+…+a1s, is given, then fA(A)=0 and fA(Ad, +)=0 in which fA(A)=a1xnn+a2xn-1+…+an-1x2+x, and A and Ad, + are the core-EP inverse and the DMP inverse of A, respectively. Furthermore, some properties of the characteristic polynomials of AD∈Cn, n and A∈Cn, n are derived.

References:

[1] Ben-Israel A, Greville T N E. Generalized inverses: Theory and applications[M]. 2nd ed. Berlin: Springer, 2003: 163-168.
[2] Manjunatha Prasad K, Mohana K S. Core-EP inverse[J]. Linear and Multilinear Algebra, 2014, 62(6): 792-802. DOI:10.1080/03081087.2013.791690.
[3] Malik S B, Thome N. On a new generalized inverse for matrices of an arbitrary index[J]. Applied Mathematics and Computation, 2014, 226: 575-580. DOI:10.1016/j.amc.2013.10.060.
[4] Gao Y, Chen J, Ke Y. *-DMP elements in *-semigroups and *-rings[J]. arXiv preprint. arXiv: 1701.00621, 2017.
[5] Li T, Chen J. Characterizations of core and dual core inverses in rings with involution[J]. Linear and Multilinear Algebra, 2017: 1-14. DOI: 10.1080/03081087.2017.1320963.
[6] Wang H. Core-EP decomposition and its applications[J]. Linear Algebra and Its Applications, 2016, 508: 289-300. DOI:10.1016/j.laa.2016.08.008.
[7] Zou H, Chen J, Patrìcio P. Characterizations of m-EP elements in rings[J]. Linear and Multilinear Algebra, 2017: 1-13. DOI: 10.1080/03081087.2017.1347136.
[8] Prasad K M, Mohana K S. Core-EP inverse[J]. Linear and Multilinear Algebra, 2014, 62(6): 792-802. DOI:10.1080/03081087.2013.791690.
[9] Kaczorek T. Cayley-Hamilton theorem for fractional linear systems[C]//8th Conference on Non-Integer Order Calculus and Its Applications. Zakopane, Poland, 2017: 45-56. DOI:10.1007/978-3-319-45474-0_5.
[10] Kaczorek T. An extension of the Cayley-Hamilton theorem for nonlinear time-varying systems[J]. International Journal of Applied Mathematics and Computer Science, 2006, 16: 141-145.
[11] Kaczorek T. Cayley-Hamilton theorem for Drazin inverse matrix and standard inverse matrices[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2016, 64(4): 793-797. DOI:10.1515/bpasts-2016-0088.
[12] Feng L G, Tan H J, Zhao K M. A generalized Cayley-Hamilton theorem[J]. Linear Algebra and Its Applications, 2012, 436(7): 2440-2445. DOI:10.1016/j.laa.2011.12.015.
[13] Hwang S G.A generalized Cayley-Hamilton theorem for polynomials with matrix coefficients[J]. Linear Algebra and Its Applications, 2011, 434(2): 475-479. DOI:10.1016/j.laa.2010.08.039.
[14] Horn R A, Johnson C R. Matrix analysis[M]. Cambridge, UK: Cambridge University Press, 2012: 109-111.
[15] Wang H, Liu X. Partial orders based on core-nilpotent decomposition[J]. Linear Algebra and its Applications, 2016, 488: 235-248. DOI:10.1016/j.laa.2015.09.046.

Memo

Memo:
Biographies: Wang Hongxing(1981—), male, doctor; Chen Jianlong(corresponding author), male, doctor, professor, 101004157@seu.edu.cn.
Foundation items: The China Postdoctoral Science Foundation(No.2015M581690), the National Natural Science Foundation of China(No.11371089), the Natural Science Foundation of Jiangsu Province(No.BK20141327), the Special Fund for Bagui Scholars of Guangxi.
Citation: Wang Hongxing, Chen Jianlong, Yan Guanjie. Generalized Cayley-Hamilton theorem for core-EP inverse matrix and DMP inverse matrix[J].Journal of Southeast University(English Edition), 2018, 34(1):135-138.DOI:10.3969/j.issn.1003-7985.2018.01.019.
Last Update: 2018-03-20