|Table of Contents|

[1] Pan Minghui, Tang Wencheng, Xing Yan,. Welding thermal characteristics analysis with numericalsimulation for thin-wall parts assembly under different conditions [J]. Journal of Southeast University (English Edition), 2018, (2): 199-207. [doi:10.3969/j.issn.1003-7985.2018.02.009]

Welding thermal characteristics analysis with numericalsimulation for thin-wall parts assembly under different conditions()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2018 2
Research Field:
Materials Sciences and Engineering
Publishing date:


Welding thermal characteristics analysis with numericalsimulation for thin-wall parts assembly under different conditions
Pan Minghui Tang Wencheng Xing Yan
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
welding assembly thin-wall parts thermal characteristics heat source model welding direction
In order to analyze the welding thermal characteristics problem, the multiscale finite element(FE)model of T-shape thin-wall assembly structure for different thicknesses and the heat source model are established to emphatically study their welding temperature distributions under different conditions. Simultaneously, different welding technology parameters and welding directions are taken into account, and the fillet weld for different welding parameters is employed on the thin-wall parts. Through comparison analysis, the results show that different welding directions, welding thicknesses and welding heat source parameters have a certain impact on the temperature distribution. Meanwhile, for the thin-wall assembly structure of the same thickness, when the heat source is moving, the greater the moving speed, the smaller the heating area, and the highest temperature will decrease. Therefore, the welding temperature field distribution can be altered by adjusting welding parameters, heat source parameters, welding thickness and welding direction, which is conducive to reducing welding deformation and choosing an appropriate and optimal welding thickness of thin-wall parts and relative welding process parameters, thus improving thin-wall welding structure assembly precision in the actual large-size welding structure assembly process in future.


[1] Deng D, Murakawa H, Liang W. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics & Engineering, 2007, 196(45/46/47/48):4613-4627.DOI:10.1016/j.cma.2007.05.023.
[2] Ma N, Wang J, Okumoto Y. Out-of-plane welding distortion prediction and mitigation in stiffened welded structures[J]. International Journal of Advanced Manufacturing Technology, 2016, 80(5):1371-1389.DOI:10.1007/s00170-015-7810-y.
[3] Murakawa H, Deng D, Ma N, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1):43-52.DOI:10.1016/j.commatsci.2011.06.040.
[4] Murakawa H, Okumoto Y, Rashed S, et al. A practical method for prediction of distortion produced on large thin plate structures during welding assembly[J]. Welding in the World, 2013, 57(6):793-802.DOI:10.1007/s40194-013-0071-1.
[5] Wang R, Zhang J, Serizawa H, et al. Study of welding inherent deformations in thin plates based on finite element analysis using interactive substructure method[J]. Materials & Design, 2009, 30(9):3474-3481.DOI:10.1016/j.matdes.2009.03.015.
[6] Moein H, Sattari-Far I. Different finite element techniques to predict welding residual stresses in aluminum alloy plates[J]. Journal of Mechanical Science and Technology, 2014, 28(2):679-689.DOI:10.1007/s12206-013-1131-6.
[7] Ikushima K, Itoh S, Takakura D, et al. Large-scale analysis of welding deformation and residual stress problem by idealized explicit FEM using iterative substructure method[J]. Quarterly Journal of the Japan Welding Society, 2014, 32(4):223-234.DOI:10.2207/qjjws.32.223.
[8] Ikushima K, Shibahara M. Large-scale non-linear analysis of residual stresses in multi-pass pipe welds by idealized explicit FEM[J]. Welding in the World, 2015, 59(6):839-850.DOI:10.1007/s40194-015-0263-y.
[9] Chen Z, Chen Z, Shenoi R A. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure[J]. Ocean Engineering, 2015, 106:271-280.DOI:10.1016/j.oceaneng.2015.07.013.
[10] Choi W, Chung H. Variation simulation of compliant metal plate assemblies considering welding distortion[J]. Journal of Manufacturing Science and Engineering, 2015, 137(3):031008. DOI:10.1115/1.4029755.
[11] Joo S M, Bang H S, Bang H S, et al. Numerical investigation on welding residual stress and out-of-plane displacement during the heat sink welding process of thin stainless steel sheets[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(1):65-72.DOI:10.1007/s12541-016-0009-9.
[12] Zeng P, Gao Y, Lei L P. Local equivalent welding element to predict the welding deformations of plate-type structures[J]. Science in China Series E: Technological Sciences, 2008, 51(9): 1502-1506.DOI:10.1007/s11431-008-0114-9.
[13] Huang H, Wang J, Li L, et al. Prediction of laser welding induced deformation in thin sheets by efficient numerical modeling[J]. Journal of Materials Processing Technology, 2016, 227:117-128.DOI:10.1016/j.jmatprotec.2015.08.002.
[14] Cîndea L, Haiegan C, Pop N, et al. The influence of thermal field in the electric arc welding of X60 carbon steel components in the CO2 environment[J].Applied Thermal Engineering, 2016, 103: 1164-1175.DOI:10.1016/j.applthermaleng.2016.05.004.
[15] Das H, Jana S S, Pal T K, et al. Numerical and experimental investigation on friction stir lap welding of aluminium to steel[J]. Science and Technology of Welding and Joining, 2014, 19(1):69-75.DOI:10.1179/1362171813y.0000000166.
[16] Okano S, Tsuji H, Mochizuki M. Temperature distribution effect on relation between welding heat input and angular distortion[J]. Science and Technology of Welding and Joining, 2016, 22(1):59-65.DOI:10.1080/13621718.2016.1185313.
[17] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2):299-305.
[18] Bhatti A A, Barsoum Z, Murakawa H, et al. Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion[J]. Materials and Design, 2015, 65:878-889.DOI:10.1016/j.matdes.2014.10.019.


Biographies: Pan Minghui(1986—), male, Ph.D. candidate; Tang Wencheng(corresponding author), male, doctor, professor, tangwc@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51675100), the National Numerical Control Equipment Major Project of China(No.2016ZX04004008).
Citation: Pan Minghui, Tang Wencheng, Xing Yan. Welding thermal characteristics analysis with numerical simulation for thin-wall parts assembly under different conditions[J].Journal of Southeast University(English Edition), 2018, 34(2):199-207.DOI:10.3969/j.issn.1003-7985.2018.02.009.
Last Update: 2018-06-20