|Table of Contents|

[1] Dong Chenghao, Li Tao, Zhang Yamei, Liu Jiaping, et al. Damage process and performance of PVA fiber-reinforcedalkali-activated slag mortar plate under bending [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 229-236. [doi:10.3969/j.issn.1003-7985.2018.02.013]

Damage process and performance of PVA fiber-reinforcedalkali-activated slag mortar plate under bending()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2018 2
Research Field:
Materials Sciences and Engineering
Publishing date:


Damage process and performance of PVA fiber-reinforcedalkali-activated slag mortar plate under bending
Dong Chenghao1 Li Tao1 Zhang Yamei1 Liu Jiaping2
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
alkali-activated slag polyvinyl alcohol fiber bend acoustic emission damage process
The effects of unoiled polyvinyl alcohol(PVA)fiber with four different volume fractions of 0%, 1.0%, 1.5% and 2.0% on the bending properties of alkali-activated slag(AAS)mortar plates were studied. Meanwhile, the acoustic emission(AE)technique and a high-speed camera were utilized to detect the crack development over the complete damage process, and the scanning electronic microscopy(SEM)was used to observe the fiber-matrix interface. Test results show that PVA fibers play a significant role in the toughness improvement of AAS plates. However, the enhancing effect of PVA fibers on the bending behaviour of AAS plates at 120 d is not as remarkable as at early ages. It is observed that the failure process of the PVA fiber-reinforced alkali-activated slag plate can be divided into three stages: elastic stage, main crack formation stage and post-peak load stage. Observations on the fracture surface of specimens indicate that the deterioration process of specimens under bending changed from fiber pull-out at 3 and 28 d to fiber fracture at 120 d.


[1] Li Z, Ding Z, Zhang Y. Development of sustainable cementitious materials[C]//Proceedings of International Workshop on Sustainable Development and Concrete Technology. Beijing, China, 2004: 55-76.(in Chinese)
[2] Davidovits J. Geopolymer chemistry and properties[C]//Proceedings of the 1st European Conference on Soft Mineralurgy. Compiegne, France, 1998: 25-48.
[3] Fernández-Jiménez A, Palomo J G, Puertas F. Alkali-activated slag mortars: Mechanical strength behaviour[J]. Cement and Concrete Research, 1999, 29(8):1313-1321. DOI:10.1016/s0008-8846(99)00154-4.
[4] Shi C, Xie P. Interface between cement paste and quartz sand in alkali-activated slag mortars[J]. Cement and Concrete Research, 1998, 28(6):887-896. DOI:10.1016/S0008-8846(98)00050-7.
[5] Brough A R, Atkinson A. Automated identification of the aggregate-paste interfacial transition zone in mortars of silica sand with Portland or alkali-activated slag cement paste[J]. Cement and Concrete Research, 2000, 30(6):849-854. DOI:10.1016/S0008-8846(00)00254-4.
[6] Komljenovic M, Bašcarevic Z, Marjanovic N, et al. External sulfate attack on alkali-activated slag[J]. Construction and Building Materials, 2013, 49:31-39. DOI:10.1016/j.conbuildmat.2013.08.013.
[7] Lee N K, Lee H K. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste[J].Cement and Concrete Composites, 2016, 72:168-179. DOI:10.1016/j.cemconcomp.2016.06.004.
[8] Roy D M, Jiang W, Silsbee M R. Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties[J]. Cement and Concrete Research, 2000, 30(12):1879-1884. DOI:10.1016/S0008-8846(00)00406-3.
[9] Provis J L, Deventer J S J V. Alkali activated materials[M]. The Netherlands: Springer, 2014.
[10] Hannant D J. Fibre cements and fibre concretes[M]. Mineralogical Society, 1978.
[11] Rashad A M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag-A guide for civil engineer[J]. Construction and Building Materials, 2013, 47:29-55. DOI:10.1016/j.conbuildmat.2013.04.011.
[12] Rashad A M. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash[J].Materials and Design, 2014, 53:1005-1025. DOI:10.1016/j.matdes.2013.07.074.
[13] Borges P H R, Banthia N, Alcamand H A, et al. Performance of blended metakaolin/blastfurnace slag alkali-activated mortars[J]. Cement and Concrete Composites, 2016, 71:42-52. DOI:10.1016/j.cemconcomp.2016.04.008.
[14] Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264.
[15] Maalej M, Li V C. Introduction of strain hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability[J]. ACI Structural Journal, 1995, 92(2):167-176. DOI: 10.14359/1150.
[16] Said S H, Razak H A, Othman I. Flexural behavior of engineered cementitious composite(ECC)slabs with polyvinyl alcohol fibers[J]. Construction and Building Materials, 2015, 75:176-188. DOI: 10.1016/j.conbuildmat.2014.10.036.
[17] Lee B Y, Cho C G, Lim H J, et al. Strain hardening fiber-reinforced alkali-activated mortar—A feasibility study[J]. Construction and Building Materials, 2012, 37:15-20. DOI: 10.1016/j.conbuildmat.2012.06.007.
[18] Natali A, Manzi S, Bignozzi M C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix[J]. Procedia Engineering, 2011, 21:1124-1131. DOI: 10.1016/j.proeng.2011.11.2120.
[19] Zhang Y, Wei S, Li Z, et al.Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber[J]. Construction and Building Materials, 2008, 22(3):370-383.
[20] Zhang Y, Wei S, Li Z, et al. Geopolymer extruded composites with incorporated fly ash and polyvinyl alcohol short fiber[J]. ACI Materials Journal, 2009, 106(1):3-10. DOI:10.1016/j.conbuildmat.2006.08.006.
[21] Alam S Y, Saliba J, Loukili A. Fracture examination in concrete through combined digital image correlation and acoustic emission techniques[J]. Construction and Building Materials, 2014, 69:232-242. DOI:10.1016/j.conbuildmat.2014.07.044.
[22] Kim B, Weiss W J. Using acoustic emission to quantify damage in restrained fiber-reinforced cement mortars[J].Cement and Concrete Research, 2003, 33(2):207-214. DOI: 10.1016/S0008-8846(02)00978-X.
[23] Wu K, Chen B, Yao W. Study on the AE characteristics of fracture process of mortar, concrete and steel-fiber-reinforced concrete beams[J].Cement and Concrete Research, 2000, 30(9):1495-1500. DOI:10.1016/S0008-8846(00)00358-6.
[24] Soulioti D, Barkoula N M, Paipetis A, et al.Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction and Building Materials, 2009, 23(12):3532-3536. DOI:10.1016/j.conbuildmat.2009.06.042.
[25] Aggelis D G, Soulioti D V, Sapouridis N, et al.Acoustic emission characterization of the fracture process in fibre reinforced concrete[J]. Construction and Building Materials, 2011, 25(11):4126-4131. DOI:10.1016/j.conbuildmat.2011.04.049.
[26] Huang M, Jiang L T, Liaw P, et al. Using acoustic emission in fatigue and fracture materials research[J]. JOM, 1998, 50(11):1-14.
[27] Alam S Y, Loukili A, Grondin F, et al.Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete[J]. Engineering Fracture Mechanics, 2015, 143:17-31. DOI:10.1016/j.engfracmech.2015.06.038.
[28] Muralidhara S, Prasad B K R, Eskandari H, et al. Fracture process zone size and true fracture energy of concrete using acoustic emission[J]. Construction and Building Materials, 2010, 24(4):479-486. DOI:10.1016/j.conbuildmat.2009.10.014.
[29] Wang C, Zhang Y, Ma A. Investigation into thefatigue damage process of rubberized concrete and plain concrete by AE analysis[J]. Journal of Materials in Civil Engineering, 2011, 23(7):953-960. DOI:10.1061/(ASCE)MT.1943-5533.0000257.
[30] Pan Z, Wu C, Liu J, et al.Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites(PVA-ECC)[J]. Construction and Building Materials, 2015, 78:397-404. DOI:10.1016/j.conbuildmat.2014.12.071.
[31] Aydın S, Baradan B. The effect of fiber properties on high performance alkali-activated slag/silica fume mortars[J]. Composites Part B: Engineering, 2013, 45(1):63-69. DOI:10.1016/j.compositesb.2012.09.080.
[32] Niu H, Wu W, Xing Y, et al.Effects of water/cement ratio on properties and microstructure of PVA fiber-reinforced cementitious composites[J]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2015, 32(4):1067-1074. DOI:10.13801/j.cnki.fhclxb.20141031.002. (in Chinese)
[33] Aggelis D G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications, 2011, 38(3):153-157. DOI:10.1016/j.mechrescom.2011.03.007.


Biographies: Dong Chenghao(1994—), male, graduate; Zhang Yamei(corresponding author), female, doctor, professor, ymzhang@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2015CB655100), the National Natural Science Foundation of China(No.51378115).
Citation: Dong Chenghao, Li Tao, Zhang Yamei, et al.Damage process and performance of PVA fiber-reinforced alkali-activated slag mortar plate under bending[J].Journal of Southeast University(English Edition), 2018, 34(2):229-236.DOI:10.3969/j.issn.1003-7985.2018.02.013.
Last Update: 2018-06-20