|Table of Contents|

[1] Wang Peijun, Chao Xiaoli, Bai Miaomiao,. Linear Weingarten spacelike hypersurfacein locally symmetric Lorentz space [J]. Journal of Southeast University (English Edition), 2018, (2): 276-280. [doi:10.3969/j.issn.1003-7985.2018.02.018]
Copy

Linear Weingarten spacelike hypersurfacein locally symmetric Lorentz space()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2018 2
Page:
276-280
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2018-06-20

Info

Title:
Linear Weingarten spacelike hypersurfacein locally symmetric Lorentz space
Author(s):
Wang Peijun Chao Xiaoli Bai Miaomiao
School of Mathematics, Southeast University, Nanjing 211189, China
Keywords:
spacelike hypersurface linear Weingarten locally symmetric Lorentz space
PACS:
O186.1
DOI:
10.3969/j.issn.1003-7985.2018.02.018
Abstract:
The rigidity of spacelike hypersurface Mn immersed in locally symmetric space Mn+11 is investigated, where the(normalized)scalar curvature R and mean curvature H of Mn satisfy R=aH+b, and a, b are real constants. First, an estimate of the upper bound of the function L(nH)is given, where L is a second-order differential operator. Then, under the assumption that the square norm of the second fundamental form is bounded by a given positive constant, it is proved that Mn must be either totally umbilical or contain two distinct principle curvatures, one of which is simple. Moreover, a similar result is obtained for complete noncompact spacelike hypersurfaces in locally symmetric Einstein spacetime. Hence, some known rigidity results for hypersurface with constant scalar curvature are extended for the linear Weingarten case.

References:

[1] Zhang S. Stability of spacelike hypersurfaces in de Sitter space [J]. Proceedings of the American Mathematical Society, 2015, 143(2): 851-857.
[2] Chu Y W, Zhai S J.On spacelike hypersurfaces with constant scalar curvature in the anti-de Sitter space[J].Differential Geometry and Its Applications, 2011, 29(6):737-746. DOI:10.1016/j.difgeo.2011.08.002.
[3] Zhang S C. Rigidity theorem for complete spacelike hypersurfaces with constant scalar curvature in Lorentz spaces[J].Israel Journal of Mathematics, 2011, 189(1):177-188. DOI:10.1007/s11856-011-0155-9.
[4] Liu J, Wei L. A gap theorem for complete space-like hypersurface with constant scalar curvature in locally symmetric Lorentz spaces [J]. Turkish J Math, 2010, 34(1): 105-114.
[5] Zhang S C, Wu B Q. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces[J].Journal of Geometry and Physics, 2010, 60(2):333-340. DOI:10.1016/j.geomphys.2009.10.005.
[6] Aquino C P, de Lima H F. On the geometry of linear Weingarten hypersurfaces in the hyperbolic space[J].Monatshefte für Mathematik, 2013, 171(3/4):259-268. DOI:10.1007/s00605-013-0476-3.
[7] Chao X L, Wang P J.Linear weingarten hypersurfaces in riemannian space forms[J].Bulletin of the Korean Mathematical Society, 2014, 51(2):567-577. DOI:10.4134/bkms.2014.51.2.567.
[8] Wang P J, Chao X L. Linear Weingarten submanifolds in unit sphere[J].Archiv der Mathematik, 2016, 106(6):581-590. DOI:10.1007/s00013-016-0881-7.
[9] Chao X L, Wang P J. Linear Weingarten hypersurfaces in locally symmetric manifolds[J].Hokkaido Mathematical Journal, 2017, 46(1):29-40. DOI:10.14492/hokmj/1498788095.
[10] Yang D. Linear Weingarten spacelike hypersurfaces in locally symmetric Lorentz space [J].Bulletin of the Korean Mathematical Society, 2012, 49(2):271-284. DOI:10.4134/bkms.2012.49.2.271.
[11] Wang Y N, Liu X M. Compact space-like hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces[J].Archivum Mathematicum, 2012(3):163-172. DOI:10.5817/am2012-3-163.
[12] Cheng S Y, Yau S T.Hypersurfaces with constant scalar curvature[J].Mathematische Annalen, 1977, 225(3):195-204. DOI:10.1007/bf01425237.
[13] Okumura M.Hypersurfaces and a pinching problem on the second fundamental tensor[J].American Journal of Mathematics, 1974, 96(1):207. DOI:10.2307/2373587.
[14] de Lima H F, de Lima J R. Complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space[J].Results in Mathematics, 2012, 63(3/4):865-876. DOI:10.1007/s00025-012-0237-y.
[15] de Lima H F, de Lima J R.Characterizations of linear weingarten spacelike hypersurfaces in einstein spacetimes[J].Glasgow Mathematical Journal, 2013, 55(3):567-579. DOI:10.1017/s0017089512000754.

Memo

Memo:
Biographies: Wang Peijun(1989—), male, Ph.D.candidate; Chao Xiaoli(corresponding author), male, doctor, professor, xlchao@seu.edu.cn.
Foundation items: The Natural Science Foundation of Jiangsu Province(No.BK20161412), the Fundamental Research Funds for the Central Universities, the Scientific Innovation Research of College Graduates in Jiangsu Province(No. KYCX17_0041).
Citation: Wang Peijun, Chao Xiaoli, Bai Miaomiao. Linear Weingartenspacelike hypersurface in locally symmetric Lorentz space[J].Journal of Southeast University(English Edition), 2018, 34(2):276-280.DOI:10.3969/j.issn.1003-7985.2018.02.018.
Last Update: 2018-06-20