|Table of Contents|

[1] Yan Huadong, Jin Hui,. Damage evolution analysis of cast steel GS-20Mn5Vbased on modified GTN model [J]. Journal of Southeast University (English Edition), 2018, (3): 364-370. [doi:10.3969/j.issn.1003-7985.2018.03.012]
Copy

Damage evolution analysis of cast steel GS-20Mn5Vbased on modified GTN model()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2018 3
Page:
364-370
Research Field:
Materials Sciences and Engineering
Publishing date:
2018-09-20

Info

Title:
Damage evolution analysis of cast steel GS-20Mn5Vbased on modified GTN model
Author(s):
Yan Huadong Jin Hui
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China
School of Civil Engineering, Southeast University, Nanjing 211189, China
Keywords:
cast steel Gurson-Tvergaard-Needleman(GTN)model damage evolution orthogonal test method optimal parameter combination
PACS:
TU512.9
DOI:
10.3969/j.issn.1003-7985.2018.03.012
Abstract:
A modified Gurson-Tvergaard-Needleman(GTN)model that accounts for the mixed(isotropic and kinematic)hardening of cast steel GS-20Mn5V was developed and implemented in the finite element program ABAQUS/Standard via a user-defined material subroutine UMAT. This model couples the stress state and damage evolution(pore volume fraction increase)by a classic method that assumes that the total void volume fraction is divided into a nucleation and a growth part. A parametric study was conducted to assess the effect of modified GTN model parameters on mechanical properties such as the nucleation, growth and coalescence of voids and to obtain the optimal parameter combination by the orthogonal test method. The predicted load-displacement curves of notched specimens with the optimal parameters are favorably compared to the experimental curves. Therefore, the modified GTN model can be used to predict the damage evaluation and fracture behavior of GS-20Mn5V.

References:

[1] Haldimann-Sturm S C, Nussbaumer A. Fatigue design of cast steel nodes in tubular bridge structures [J]. International Journal of Fatigue, 2008, 30(3): 528-537. DOI:10.1016/j.ijfatigue.2007.03.007.
[2] Wang Q G, Jones P E. Prediction of fatigue performance in aluminum shape castings containing defects [J]. Metallurgical & Materials Transactions B, 2007, 38(4): 615-621. DOI:10.1007/s11663-007-9051-4.
[3] Gao Y X, Yi J Z, Lee P D, et al. The effect of porosity on the fatigue life of cast aluminium-silicon alloys [J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(7): 559-570. DOI:10.1111/j.1460-2695.2004.00780.x.
[4] Sigl K M, Hardin R A, Stephens R I, et al. Fatigue of 8630 cast steel in the presence of porosity [J]. International Journal of Cast Metals Research, 2004, 17(3): 130-146. DOI:10.1179/136404604225020588.
[5] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99(1): 297-300. DOI:10.1115/1.3443401.
[6] Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions [J]. International Journal of Fracture, 1981, 17(4): 389-407. DOI:10.1007/bf00036191.
[7] Tvergaard V. On localization in ductile materials containing spherical voids[J]. International Journal of Fracture, 1982, 18(4): 237-252. DOI:10.1007/BF00015686.
[8] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar [J]. Acta Metallurgica, 1984, 32(1): 157-169. DOI:10.1016/0001-6160(84)90213-x.
[9] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490. DOI:10.1016/0022-5096(84)90031-0.
[10] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics & Physics of Solids, 1969, 17(3):201-217.
[11] Barrera O, Tarleton E, Tang H W, et al. Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals[J]. Computational Materials Science, 2016, 122: 219-228. DOI:10.1016/j.commatsci.2016.05.030.
[12] Tu H, Schmauder S, Weber U. Numerical study of electron beam welded butt joints with the GTN model [J]. Computational Mechanics, 2012, 50(2): 245-255. DOI:10.1007/s00466-012-0739-1.
[13] Chu C C, Needleman A. Void nucleation effects in biaxially stretched sheets [J]. Journal of Engineering Materials & Technology, 1980, 102(3): 249. DOI:10.1115/1.3224807.
[14] Aravas N. On the numerical integration of a class of pressure-dependent plasticity models [J]. International Journal for Numerical Methods in Engineering, 1987, 24(7): 1395-1416. DOI:10.1002/nme.1620240713.
[15] Lemaitre J. Aspect phenomenologique de la rupture par endommagement [J]. Journal de Mecanique Appliquee, 1978, 2(3):317-365.
[16] Frederick C O, Armstrong P J. A mathematical representation of the multiaxial Bauschinger effect [J].Materials at High Temperatures, 2007, 24(1): 1-26. DOI:10.3184/096034007x207589.
[17] Zhang Z L. On the accuracies of numerical integration algorithms for Gurson-based pressure-dependent elastoplastic constitutive models [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1): 15-28. DOI:10.1016/0045-7825(94)00706-s.
[18] Zhang P. Study on fracture prediction of building steel joints using micro-mechanical GTN model [D]. Beijing: School of Civil Engineering, Beijing Jiaotong University, 2014.(in Chinese)
[19] Tong X W, Tong L W, Zhou F, et al. Fracture prediction of welded beam-to-column joints based on micromechanics damage model [J]. Journal of Building Structures, 2013, 34(11):82-90.(in Chinese)
[20] Tvergaard V, Hutchinson J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1377-1397. DOI:10.1016/0022-5096(92)90020-3.
[21] Sun G Q, Sun F Y, Cao F L, et al. Numerical simulation of tension properties for Al-Cu alloy friction stir-welded joints with GTN damage model [J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4358-4363. DOI:10.1007/s11665-015-1715-7.
[22] Kang L, Dixon S, Wang K, et al. Enhancement of signal amplitude of surface wave EMATs based on 3-D simulation analysis and orthogonal test method [J]. Ndt & E International, 2013, 59: 11-17. DOI:10.1016/j.ndteint.2013.05.003.

Memo

Memo:
Biographies: Yan Huadong(1990—), female, Ph.D. candidate; Jin Hui(corresponding author), female, doctor, professor, jinhui@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No.2017YFC0805103). the National Natural Science Foundation of China(No.51578137, 51438002, 51108075), the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
Citation: Yan Huadong, Jin Hui.Damage evolution analysis of cast steel GS-20Mn5V based on modified GTN model[J].Journal of Southeast University(English Edition), 2018, 34(3):364-370.DOI:10.3969/j.issn.1003-7985.2018.03.012.
Last Update: 2018-09-20