|Table of Contents|

[1] Gu Haiyan, Zhang Jian, Jin Peter J., et al. Stability analysis of lead-vehicle control model in cooperativeadaptive cruise control platoon within heterogeneous traffic flow [J]. Journal of Southeast University (English Edition), 2018, (3): 386-393. [doi:10.3969/j.issn.1003-7985.2018.03.015]
Copy

Stability analysis of lead-vehicle control model in cooperativeadaptive cruise control platoon within heterogeneous traffic flow()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2018 3
Page:
386-393
Research Field:
Traffic and Transportation Engineering
Publishing date:
2018-09-20

Info

Title:
Stability analysis of lead-vehicle control model in cooperativeadaptive cruise control platoon within heterogeneous traffic flow
Author(s):
Gu Haiyan1 2 Zhang Jian1 Jin Peter J. 3 Ran Bin1
1 School of Transportation, Southeast University, Nanjing 210096, China
2 College of Transportation Science & Engineering, Nanjing Tech University, Nanjing 210009, China
3 Department of Civil and Environmental
Keywords:
stability analysis cooperative adaptive cruise control(CACC)platoon lead-vehicle model frequency-domain approach
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2018.03.015
Abstract:
In order to analyze the stability impact of cooperative adaptive cruise control(CACC)platoon, an adaptive control model designed for the lead vehicle in a CACC platoon(LCACC model)in heterogeneous traffic flow with both CACC and manual vehicles is proposed. Considering the communication delay of a CACC platoon, a frequency-domain approach is taken to analyze the stability conditions of the novel lead-vehicle CACC model. Field trajectory data from the next-generation simulation(NGSIM)data is used as the initial condition. To account for car-following behaviors in reality, an intelligent driver model(IDM)is calibrated with the same NGSIM dataset from a previous study to model manual vehicles. The stability conditions of the proposed model are validated by the ring-road stability analysis. The ring-road test results indicate the potential of the LCACC model for improving the traffic flow stability impact of CACC platoons. Sensitivity analysis shows that the CACC fleet size has impact on the parameters of the LCACC model.

References:

[1] Darbha S, Rajagopal K R.Intelligent cruise control systems and traffic flow stability[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(6):329-352. DOI:10.1016/S0968-090X(99)00024-8.
[2] Pipes L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3): 274-281. DOI:10.1063/1.1721265.
[3] Lakouari N, Bentaleb K, Ez-Zahraouy H, et al. Correlation velocities in heterogeneous bidirectional cellular automata traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 439: 132-141. DOI:10.1016/j.physa.2015.07.024.
[4] Li Y, Wang H, Wang W, et al. Evaluation of the impacts of cooperative adaptive cruise control onreducing rear-end collision risks on freeways[J]. School Accident Analysis and Prevention, 2017, 98: 87-95. DOI:10.1016/j.aap.2016.09.015.
[5] Kesting A, Treiber M, Schönhof M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 668-683. DOI:10.1016/j.trc.2007.12.004.
[6] Liu F X, Cheng R J, Ge H X, et al. An improved car-following model considering the influence of optimal velocity for leading vehicle[J]. Nonlinear Dynamics, 2016, 85(3): 1469-1478. DOI:10.1007/s11071-016-2772-7.
[7] Zhou T, Sun D H, Kang Y R, et al.A new car-following model with consideration of the prevision driving behavior[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10): 3820-3826. DOI:10.1016/j.cnsns.2014.03.012.
[8] van Arem B, van Driel C J G, Visser R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436. DOI:10.1109/tits.2006.884615.
[9] Lidström K, Sjöberg K, Holmberg U, et al. A modular CACC system integration and design[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3):1050-1061.DOI:10.1109/tits.2012.2204877.
[10] Milanés V, Shladover S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C, 2014, 48: 285-300. DOI:10.1016/j.trc.2014.09.001.
[11] Yu S W, Shi Z K. An extended car-following model at signalized intersections[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 407: 152-159. DOI:10.1016/j.physa.2014.03.081.
[12] Gu H Y, Jin P J, Wan X, et al. A leading vehicle model for comfortable acceleration among cooperative adaptive cruise control(CACC)vehicle platoons[C]//Transportation Research Board 94th Annual Meeting. Washington, DC, USA, 2014:5215-5232.
[13] Darbha S, Rajagopal K R.Intelligent cruise control systems and traffic flow stability[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(6):329-352. DOI:10.1016/S0968-090X(99)00024-8.
[14] van Arem B, de Vos A P, Vanderschuren M. The microscopic traffic simulation model MIXIC 1.3[R]. Washington, DC, USA: TRID, 1997.
[15] Hua X D, Wang W, Wang H. A car-following model with the consideration of vehicle-to-vehicle communication technology[J]. Acta Physica Sinica, 2016, 65(1):010502-1-010502-12.
[16] Zheng L. Detailed string stability analysis for bi-directional optimal velocity model[J]. Journal of Central South University, 2015, 22(4): 1563-1573. DOI:10.1007/s11771-015-2673-9.
[17] Naus G J L, Vugts R P A, Ploeg J, et al. String-stable CACC design and experimental validation:A frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9):4268-4279. DOI:10.1109/tvt.2010.2076320.
[18] Guo G, Yue W. Autonomous platoon control allowing range-limited sensors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7):2901-2912. DOI:10.1109/tvt.2012.2203362.
[19] Seiler P, Pant A, Hedrick K. Disturbance propagation in vehicle strings[J]. IEEE Transactions on Automatic Control, 2004, 49(10):1835-1841. DOI:10.1109/tac.2004.835586.
[20] Shaw E, Hedrick J K. Controller design for string-stable heteroge-neous vehicle strings[C]// 46th IEEE Conference on Decision and Control. New Orleans, LA, USA, 2008:2868-2875. DOI:10.1109/CDC.2007.4435011.
[21] Kianfar R, Augusto B, Ebadighajari A, et al. Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3):994-1007. DOI:10.1109/tits.2012.2186513.
[22] Naus G, Vugts R, Ploeg J, et al. Towards on-the-road implementation of cooperative adaptive cruise control[C]//16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Stockholm, Sweden, 2009, 58(8):6145-6150.
[23] Ngoduy D.Analytical studies on the instabilities of heterogeneous intelligent traffic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(10): 2699-2706. DOI:10.1016/j.cnsns.2013.02.018.
[24] Orosz G, Wilson R E, Stépán G. Traffic jams: Dynamics and control[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 2010, 368(1928):4455-4479.
[25] Shladover S, Vanderwerf J, Miller M A, et al. Development and performance evaluation of AVCSS deployment sequences to advance from today’s driving environment to full automation[J]. Inorganic Chemistry, 2001, 46(1):93-102.
[26] Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824. DOI:10.1103/physreve.62.1805.
[27] Sheikholeslam S, Desoer C A. Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: A system level study[J]. IEEE Transactions on Vehicular Technology, 1993, 42(4):546-554. DOI:10.1109/25.260756.
[28] Liang C Y, Peng H. String stability analysis of adaptive cruise controlled vehicles[J].JSME International Journal Series C, 2000, 43(3):671-677. DOI:10.1299/jsmec.43.671.

Memo

Memo:
Biographies: Gu Haiyan(1988—), female, Ph.D. candidate; Zhang Jian(corresponding author), male, doctor, associate professor, zhangjian8seu@163.com.
Foundation item: The National High Technology Research and Development Program of China(863 Program)(No.2011AA110405).
Citation: Gu Haiyan, Zhang Jian, Jin Peter J., et al. Stability analysis of lead-vehicle control models in cooperative adaptive cruise control platoon within heterogeneous traffic flow[J].Journal of Southeast University(English Edition), 2018, 34(3):389-393.DOI:10.3969/j.issn.1003-7985.2018.03.015.
Last Update: 2018-09-20