|Table of Contents|

[1] Zou Qian, Xia Weiwei, Zhang Jing, Huang Bonan, et al. An indoor positioning system for mobile target trackingbased on VLC and IMU fusion [J]. Journal of Southeast University (English Edition), 2018, 34 (4): 451-458. [doi:10.3969/j.issn.1003-7985.2018.04.006]
Copy

An indoor positioning system for mobile target trackingbased on VLC and IMU fusion()
基于VLC与IMU融合的移动物体跟踪室内定位系统
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 4
Page:
451-458
Research Field:
Information and Communication Engineering
Publishing date:
2018-12-20

Info

Title:
An indoor positioning system for mobile target trackingbased on VLC and IMU fusion
基于VLC与IMU融合的移动物体跟踪室内定位系统
Author(s):
Zou Qian, Xia Weiwei, Zhang Jing, Huang Bonan, Yan Feng, Shen Lianfeng
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
邹倩, 夏玮玮, 张静, 黄博南, 燕锋, 沈连丰
东南大学移动通信国家重点实验室, 南京 210096
Keywords:
indoor positioning system(IPS) visible light communication(VLC) inertial measurement unit(IMU) hybrid positioning algorithm
室内定位系统 可见光通信 惯性测量单元 混合定位算法
PACS:
TN929.5
DOI:
10.3969/j.issn.1003-7985.2018.04.006
Abstract:
An indoor positioning system(IPS)is designed to realize positioning and tracking of mobile targets, by taking advantages of both the visible light communication(VLC)and inertial measurement unit(IMU). The platform of the IPS is designed, which consists of the light-emitting diode(LED)based transmitter, the receiver and the positioning server. To reduce the impact caused by measurement errors, both inertial sensing data and the received signal strength(RSS)from the VLC are calibrated. Then, a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore, a hybrid positioning algorithm is proposed by using the adaptive Kalman filter(AKF)and the weighted least squares(WLS)trilateration to estimate the positions of the mobile targets. Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC, mitigate the IMU drifts and improve the positioning accuracy of mobile targets.
利用可见光通信(VLC)和惯性测量单元(IMU), 设计了室内定位系统(IPS), 实现对移动物体的定位和跟踪.该IPS平台包括发光二极管发射器、接收器和定位服务器3部分.为了减少由测量引起的误差, 提出了惯性传感数据校准模型和可见光通信RSS数据归一化校准模型对数据进行校准.然后, 通过建立的实际传播模型, 从RSS数据中计算发射器和接收器之间的距离.此外, 提出了一种混合定位算法, 使用自适应卡尔曼滤波器和加权最小二乘三边测量来估计移动物体的位置.实验结果表明, 采用所提混合定位算法的IPS能够扩展VLC的定位区域, 减轻IMU漂移, 提高移动物体的定位精度.

References:

[1] He K, Zhang Y, Zhu Y, et al. A hybrid indoor positioning system based on UWB and inertial navigation [C]// IEEE International Conference on Wireless Communications & Signal Processing. Hefei, China, 2015: 1-5.
[2] van M T, van Tuan N, Son T T, et al. Weighted k-nearest neighbour model for indoor VLC positioning[J]. IET Communications, 2017, 11(6): 864-871. DOI:10.1049/iet-com.2016.0961.
[3] Nakazawa Y, Makino H, Nishimori K, et al. LED-tracking and ID-estimation for indoor positioning using visible light communication [C]// IEEE International Conference on Indoor Positioning and Indoor Navigation. Busan, South Korea, 2015:87-94.
[4] Wu C S, Yang Z, Liu Y H. Smartphones based crowdsourcing for indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 444-457. DOI:10.1109/tmc.2014.2320254.
[5] Li Q L, Wang J Y, Huang T, et al. Three-dimensional indoor visible light positioning system with a single transmitter and a single tilted receiver[J]. Optical Engineering, 2016, 55(10): 106103. DOI:10.1117/1.oe.55.10.106103.
[6] Aghili F, Su C Y. Robust relative navigation by integration of ICP and adaptive Kalman filter using laser scanner and IMU[J]. ASME Transactions on Mechatronics, 2016, 21(4): 2015-2026. DOI:10.1109/tmech.2016.2547905.
[7] Won S H P, Melek W W, Golnaraghi F. A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1787-1798. DOI:10.1109/tie.2009.2032431.
[8] Lü H, Feng L H, Yang A Y, et al. High accuracy VLC indoor positioning system with differential detection[J].IEEE Photonics Journal, 2017, 9(3): 1-13. DOI:10.1109/jphot.2017.2698240.
[9] Krommenacker N, Vásquez O C, Alfaro M D, et al. A self-adaptive cell-ID positioning system based on visible light communications in underground mines [C]// 2016 IEEE International Conference on Automatica. Curico, Chile, 2016: 16525691. DOI:10.1109/ICA-ACCA.2016.7778427.
[10] Guan W P, Wu Y X, Wen S S, et al. A novel three-dimensional indoor positioning algorithm design based on visible light communication [J]. Optics Communications, 2017, 392:282-293.
[11] Jimenez Ruiz A R, Seco Granja F, Prieto Honorato J C, et al. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(1): 178-189. DOI:10.1109/tim.2011.2159317.
[12] Liu W L. LiDAR-IMU time delay calibration based on iterative closest point and iterated sigma point Kalman filter[J]. Sensors, 2017, 17(3):539. DOI:10.3390/s17030539.
[13] Kumar G A, Patil A K, Patil R, et al. A LiDAR and IMU integrated indoor navigation system for UAVs and its application in real-time pipeline classification[J]. Sensors, 2017, 17(6): 1268. DOI:10.3390/s17061268.
[14] Zhao Y W. Performance evaluation of cubature Kalman filter in a GPS/IMU tightly-coupled navigation system[J]. Signal Processing, 2016, 119: 67-79. DOI:10.1016/j.sigpro.2015.07.014.
[15] Zhang X L, Duan J Y, Fu Y G, et al. Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator[J]. Journal of Lightwave Technology, 2014, 32(21): 4180-4186. DOI:10.1109/jlt.2014.2349530.
[16] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100-107. DOI:10.1109/tce.2004.1277847.
[17] Nguyen N T, Nguyen N H, Nguyen V H, et al. Improvement of the VLC localization method using the extended Kalman filter [C]// 2014 IEEE Region 10 Conference. Bangkok, Thailand, 2014: 14885864. DOI:10.1109/TENCON.2014.7022416.
[18] Fang X M, Nan L, Jiang Z H, et al.Robust node position estimation algorithms for wireless sensor networks based on improved adaptive Kalman filters[J]. Computer Communications, 2017, 101: 69-81. DOI:10.1016/j.comcom.2016.11.005.
[19] González R, Giribet J I, Patiño H D. An approach to benchmarking of loosely coupled low-cost navigation systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2014, 21(3): 272-287. DOI:10.1080/13873954.2014.952642.
[20] Zhuang Y, El-Sheimy N. Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation[J]. IEEE Sensors Journal, 2016, 16(1): 224-234. DOI:10.1109/jsen.2015.2477444.

Memo

Memo:
Biographies: Zou Qian(1993—), female, graduate; Xia Weiwei(corresponding author), female, doctor, associate professor, wwxia@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61741102, 61471164, 61601122), the Fundamental Research Funds for the Central Universities(No.SJLX_160040).
Citation: Zou Qian, Xia Weiwei, Zhang Jing, et al. An indoor positioning system for mobile target tracking based on VLC and IMU fusion[J].Journal of Southeast University(English Edition), 2018, 34(4):451-458.DOI:10.3969/j.issn.1003-7985.2018.04.006.
Last Update: 2018-12-20