|Table of Contents|

[1] Qin Guofeng, Na Jingxin, Mu Wenlong, Tan Wei, et al. Failure load prediction of adhesive joints under different stressstates over the service temperature range of automobiles [J]. Journal of Southeast University (English Edition), 2018, (4): 508-516. [doi:10.3969/j.issn.1003-7985.2018.04.014]
Copy

Failure load prediction of adhesive joints under different stressstates over the service temperature range of automobiles()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2018 4
Page:
508-516
Research Field:
Traffic and Transportation Engineering
Publishing date:
2018-12-20

Info

Title:
Failure load prediction of adhesive joints under different stressstates over the service temperature range of automobiles
Author(s):
Qin Guofeng Na Jingxin Mu Wenlong Tan Wei Liu Haolei Pu Leixin
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130021, China
Keywords:
automobiles adhesive joints failure loads temperature cohesive zone model
PACS:
U463.82
DOI:
10.3969/j.issn.1003-7985.2018.04.014
Abstract:
To predict the failure loads of adhesive joints under different stress states over the service temperature range of automobiles, adhesively bonded carbon fiber reinforced plastic(CFRP)/aluminum alloy joints under shear stress state(thick-adherend shear joints, TSJ), normal stress state(butt joints, BJ)and combined shear and normal stress states(scarf joints with scarf angle 45°, SJ45°)were manufactured and tested at -40, -20, 0, 20, 40, 60 and 80 ℃, respectively. The glass transition temperature Tg of the adhesive and CFRP, failure loads and fracture surfaces were used to analyze the failure mechanism of CFRP/aluminum alloy joints at different temperatures. A response surface, describing the variations of quadratic stress criteria with temperature, was established and introduced into the cohesive zone model(CZM)to carry out a simulation analysis. Results show that the failure of CFRP/aluminum alloy joints was determined collectively by the mechanical performances of adhesive and CFRP. Besides, reducing temperature or increasing the proportion of normal stress of adhesive layer was more likely to cause fibre tear or delamination of CFRP, resulting in a more obvious effect of CFRP. The validity of the prediction method was verified by the test of scarf joints with the scarf angle of 30°(SJ30°)and 60°(SJ60°)at -10 and 50 ℃.

References:

[1] Elmarakbi A. Advanced composite materials for automotive applications: Structural integrity and crashworthiness [M]. Chichester, UK: John Wiley & Sons Ltd, 2013. DOI:10.1002/9781118535288.
[2] Cui X T, Zhang H W, Wang S X, et al. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration[J]. Materials & Design, 2011, 32(2): 815-821. DOI:10.1016/j.matdes.2010.07.018.
[3] Banea M D, da Silva L F M. Adhesively bonded joints in composite materials: An overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223(1): 1-18. DOI:10.1243/14644207jmda219.
[4] da Silva L F M, Öchsner A, Adams R D. eds. Handbook of adhesion technology[M]. Berlin, Heidelberg: Springer, 2011: 1527-1533. DOI:10.1007/978-3-642-01169-6_59.
[5] Banea M D, de Sousa F S M, da Silva L F M, et al. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology, 2011, 25(18): 2461-2474. DOI:10.1163/016942411x580144.
[6] Banea M D, da Silva L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224(2):51-62. DOI:10.1243/14644207jmda283.
[7] Zhang Y, Vassilopoulos A P, Keller T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints[J]. Composite Structures, 2010, 92(7):1631-1639. DOI:10.1016/j.compstruct.2009.11.028.
[8] da Silva L F M, Adams R D. Joint strength predictions for adhesive joints to be used over a wide temperature range[J]. International Journal of Adhesion and Adhesives, 2007, 27(5):362-379. DOI:10.1016/j.ijadhadh.2006.09.007.
[9] Grant L D R, Adams R D, da Silva L F M. Effect of the temperature on the strength of adhesively bonded single lap and T joints for the automotive industry[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 535-542. DOI:10.1016/j.ijadhadh.2009.01.002.
[10] Adams R D, Mallick V. The effect of temperature on the strength of adhesively-bonded composite-aluminium joints[J]. The Journal of Adhesion, 1993, 43(1/2): 17-33. DOI:10.1080/00218469308026585.
[11] He X C. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4):248-264. DOI:10.1016/j.ijadhadh.2011.01.006.
[12] Khoramishad H, Crocombe A D, Katnam K B, et al. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model[J]. International Journal of Fatigue, 2010, 32(7):1146-1158. DOI:10.1016/j.ijfatigue.2009.12.013.
[13] Campilho R D S G, Banea M D, Neto J A B P, et al. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations[J]. The Journal of Adhesion, 2012, 88(4/5/6): 513-533. DOI:10.1080/00218464.2012.660834.
[14] Lee M, Yeo E, Blacklock M, et al. Predicting the strength of adhesively bonded joints of variable thickness using a cohesive element approach[J]. International Journal of Adhesion and Adhesives, 2015, 58:44-52. DOI:10.1016/j.ijadhadh.2015.01.006.
[15] Qin G F, Na J X, Tan W, et al. Failure prediction of adhesively bonded CFRP-aluminum alloy joints using cohesive zone model with consideration of temperature effect[J]. The Journal of Adhesion, 2018:1-24. DOI:10.1080/00218464.2018.1440212.
[16] Cassidy P E, Johnson J M, Locke C E. The relationship of glass transition temperature to adhesive strength[J]. the Journal of Adhesion, 1972, 4(3): 183-191. DOI:10.1080/00218467208072222.
[17] Rieger J. The glass transition temperature Tg of polymers: Comparison of the values from differential thermal analysis(DTA, DSC)and dynamic mechanical measurements(torsion pendulum)[J]. Polymer Testing, 2001, 20(2):199-204. DOI:10.1016/S0142-9418(00)00023-4.
[18] Mukherjee B, Dillard D A, Moore R B, et al. Debonding of confined elastomeric layer using cohesive zone model[J]. International Journal of Adhesion and Adhesives, 2016, 66: 114-127. DOI:10.1016/j.ijadhadh.2015.12.006.
[19] Ridha M, Tan V B C, Tay T E. Traction-separation laws for progressive failure of bonded scarf repair of composite panel[J]. Composite Structures, 2011, 93(4):1239-1245. DOI:10.1016/j.compstruct.2010.10.015.
[20] Jiang X, Qiang X H, Kolstein H, et al. Analysis on adhesively-bonded joints of FRP-steel composite bridge under combined loading: Arcan test study and numerical modeling[J]. Polymers, 2016, 8(1): 18-1-18-17. DOI:10.3390/polym8010018.

Memo

Memo:
Biographies: Qin Guofeng(1990—), male, Ph.D. candidate; Na Jing-xin(corresponding author), male, professor, najingxin@jlu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51775230).
Citation: Qin Guofeng, Na Jingxin, Mu Wenlong, et al. Failure load prediction of adhesive joints under different stress states over the service temperature range of automobiles.[J].Journal of Southeast University(English Edition), 2018, 34(4):508-516.DOI:10.3969/j.issn.1003-7985.2018.04.014.
Last Update: 2018-12-20