|Table of Contents|

[1] Song Xucheng, Li Pu, Zhu Rui,. Multi-relaxation-time lattice Boltzmann simulationof slide damping in micro-scale shear-driven rarefied gas flow [J]. Journal of Southeast University (English Edition), 2019, 35 (1): 30-35. [doi:10.3969/j.issn.1003-7985.2019.01.005]

Multi-relaxation-time lattice Boltzmann simulationof slide damping in micro-scale shear-driven rarefied gas flow()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 1
Research Field:
Mathematics, Physics, Mechanics
Publishing date:


Multi-relaxation-time lattice Boltzmann simulationof slide damping in micro-scale shear-driven rarefied gas flow
Song Xucheng Li Pu Zhu Rui
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
lattice Boltzmann method multi-relaxation-time slide film damping shear-driven oscillating flow
To investigate the slide film damping in the micro-scale shear-driven rarefied gas flows, an effective multi-relaxation-time lattice Boltzmann method(MRT-LBM)is proposed. Through the Knudsen boundary layer model, the effects of wall and rarefaction are considered in the correction of relaxation time. The results of gas velocity distributions are compared among the MRT, Monte Carlo model(DSMC)and high-order LBM, and the effects of the tangential momentum accommodation coefficient on the gas velocity distributions are also compared between the MRT and the high-order LBM. It is indicated that the amendatory MRT-LBM can unlock the dilemma of simulation of micro-scale non-equilibrium. Finally, the effects of the Knudsen number, the Stokes number, and the gap between the plates on the damping are researched. The results show that by decreasing the Knudsen number or increasing the Stokes number, the slide film damping increases in the transition regime; however, as the size of the gap increases, the slide film damping decreases substantially.


[1] Huang Q G, Pan G, Song B W. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces[J]. Acta Physica Sinica, 2014, 63(5): 236-242. DOI:10.7498/aps.63.054701. (in Chinese)
[2] Li Dongqing. Encyclopedia of microfluidics and nanofluidics [M]. 2nd ed. New York: Springer-Verlag, 2015: 681-693.
[3] Wu L, Reese J M, Zhang Y H. Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows[J]. Journal of Fluid Mechanics, 2014, 746: 53-84. DOI:10.1017/jfm.2014.79.
[4] Pfeiffer M, Nizenkov P, Mirza A, et al. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases[J]. Physics of Fluids, 2016, 28(2): 027103. DOI:10.1063/1.4940989.
[5] Bakhshan Y, Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann(MRT)method[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 440: 161-175. DOI:10.1016/j.physa.2015.08.012.
[6] Yang D Y, Wang M. Lattice Boltzmann method[M]. Beijing: Publishing House of Electronics Industry, 2015: 69-70.(in Chinese)
[7] Nie X B, Doolen G D, Chen S Y. Lattice-Boltzmann simulations of fluid flows in MEMS[J].Journal of Statistical Physics, 2002, 107(1/2): 279-289. DOI:10.1023/a:1014523007427.
[8] Kim S H, Pitsch H, Boyd I D. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows[J]. Physical Review E, 2008, 77(2): 026704. DOI:10.1103/physreve.77.026704.
[9] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis[J]. Physical Review Letters, 2002, 89(6): 064502. DOI:10.1103/physrevlett.89.064502.
[10] Ansumali S, Karlin I V. Kinetic boundary conditions in the lattice Boltzmann method[J]. Physical Review E, 2002, 66(2): 026311. DOI:10.1103/physreve.66.026311.
[11] Tang G H, Tao W Q, He Y L. Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions[J]. Physics of Fluids, 2005, 17(5): 058101. DOI:10.1063/1.1897010.
[12] Meng X H, Guo Z L. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number[J]. Physical Review E, 2015, 92(4): 043305. DOI:10.1103/physreve.92.043305.
[13] Park J H, Bahukudumbi P, Beskok A. Rarefaction effects on shear driven oscillatory gas flows: A direct simulation Monte Carlo study in the entire Knudsen regime[J]. Physics of Fluids, 2004, 16(2): 317-330. DOI:10.1063/1.1634563.
[14] Tang G H, Gu X J, Barber R W, et al. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow[J]. Physical Review E, 2008, 78(2): 026706. DOI:10.1103/physreve.78.026706.
[15] Guo Z. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 77(3): 036707. DOI:10.1103/PhysRevE.77.036707.
[16] Hadjiconstantinou N G. Oscillatory shear-driven gas flows in the transition and free-molecular-flow regimes[J]. Physics of Fluids, 2005, 17(10): 100611. DOI:10.1063/1.1874193.


Biographies: Song Xucheng(1993—), male, graduate; Li Pu(corresponding author), male, doctor, professor, seulp@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 51375091).
Citation: Song Xucheng, Li Pu, Zhu Rui.Multi-relaxation-time lattice Boltzmann simulation of slide damping in micro-scale shear-driven rarefied gas flow[J].Journal of Southeast University(English Edition), 2019, 35(1):30-35.DOI:10.3969/j.issn.1003-7985.2019.01.005.
Last Update: 2019-03-20