|Table of Contents|

[1] Zhu Jianzhong, Wu Xiao, Shen Jiong, et al. ESO-based decoupling control with multi-objective optimizationfor boiler-turbine unit [J]. Journal of Southeast University (English Edition), 2019, 35 (1): 64-71. [doi:10.3969/j.issn.1003-7985.2019.01.010]

ESO-based decoupling control with multi-objective optimizationfor boiler-turbine unit()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 1
Research Field:
Energy and Power Engineering
Publishing date:


ESO-based decoupling control with multi-objective optimizationfor boiler-turbine unit
Zhu Jianzhong1 2 Wu Xiao1 Shen Jiong1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
boiler-turbine unit extended state observer(ESO) decoupling control multi-objective optimization
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI)decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.


[1] Sun L, Hua Q S, Li D H, et al. Direct energy balance based active disturbance rejection control for coal-fired power plant[J]. ISA Transactions, 2017, 70: 486-493. DOI:10.1016/j.isatra.2017.06.003.
[2] Sun L, Li D H, Hu K T, et al. On tuning and practical implementation of active disturbance rejection controller: A case study from a regenerative heater in a 1000 MW power plant[J]. Industrial & Engineering Chemistry Research, 2016, 55(23): 6686-6695. DOI:10.1021/acs.iecr.6b01249.
[3] Chen P C, Shamma J S. Gain-scheduled l1-optimal control for boiler-turbine dynamics with actuator saturation[J]. Journal of Process Control, 2004, 14(3): 263-277. DOI:10.1016/S0959-1524(03)00040-4.
[4] Dettori S, Iannino V, Colla V, et al. An adaptive fuzzy logic-based approach to PID control of steam turbines in solar applications[J]. Applied Energy, 2018, 227: 655-664. DOI:10.1016/j.apenergy.2017.08.145.
[5] Tan W, Marquez H J, Chen T W, et al. Analysis and control of a nonlinear boiler-turbine unit [J] Journal of Process Control, 2005, 15(8): 883-891.DOI:10.1016/j.jprocont.2005.03.007.
[6] Zhang R D, Xue A K, Wang S Q, et al. An improved model predictive control approach based on extended non-minimal state space formulation[J]. Journal of Process Control, 2011, 21(8): 1183-1192. DOI:10.1016/j.jprocont.2011.06.009.
[7] Wu X, Shen J, Li Y G, et al. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods[J]. ISA Transactions, 2014, 53(3): 699-708. DOI:10.1016/j.isatra.2013.12.033.
[8] Fu C F, Tan W. Decentralized active disturbance rejection control for a benchmark boiler[C]// 2015 IEEE 10th Conference on Industrial Electronics and Applications(ICIEA). Auckland, New Zealand, 2015:15617278. DOI:10.1109/ICIEA.2015.7334364.
[9] Wu X, Shen J, Li Y G, et al. Hierarchical optimization of boiler-turbine unit using fuzzy stable model predictive control[J]. Control Engineering Practice, 2014, 30: 112-123. DOI:10.1016/j.conengprac.2014.03.004.
[10] Zhang F, Wu X, Shen J. Extended state observer based fuzzy model predictive control for ultra-supercritical boiler-turbine unit[J]. Applied Thermal Engineering, 2017, 118: 90-100. DOI:10.1016/j.applthermaleng.2017.01.111.
[11] Han J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. DOI:10.1109/tie.2008.2011621.
[12] Shao X L, Wang H L. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO[J]. ISA Transactions, 2015, 57: 10-22. DOI:10.1016/j.isatra.2015.02.013.
[13] Wu J S, Chen S L, He Z R, et al. On disturbance rejection of load simulator using model-based ESO[C]//2018 IEEE 14th International Conference on Control and Automation(ICCA). Anchorage, AK, USA, 2018. DOI:10.1109/ICCA.2018.8444356.
[14] Nguyen H T, Jung J W. Disturbance-rejection-based model predictive control:Flexible-mode design with a modulator for three-phase inverters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 2893-2903. DOI:10.1109/tie.2017.2758723.
[15] Zhao H R, Shen J, Li Y G, et al. A stable multi-objective economic MPC scheme for boiler-turbine units[J]. IFAC—Papers on Line, 2017, 50(1): 11070-11075. DOI:10.1016/j.ifacol.2017.08.2489.
[16] Garrido J, Morilla F, Vazquez F. Centralized PID control by decoupling of a boiler-turbine unit[C]//2009 European Control Conference(ECC). Budapest, Hungary, 2009: 15034773. DOI: 10.23919/ECC.2009.7075027.


Biographies: Zhu Jianzhong(1981—), male, Ph.D. candidate; Shen Jiong(corresponding author), male, doctor, professor, shenj@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51576041, 51506029).
Citation: Zhu Jianzhong, Wu Xiao, Shen Jiong. ESO-based decoupling control with multi-objective optimization for boiler-turbine unit[J].Journal of Southeast University(English Edition), 2019, 35(1):64-71.DOI:10.3969/j.issn.1003-7985.2019.01.010.
Last Update: 2019-03-20