|Table of Contents|

[1] Shi Guodong, Wang Shuanhong,. BiHom-H-pseudoalgebras and their constructions [J]. Journal of Southeast University (English Edition), 2019, 35 (2): 269-272. [doi:10.3969/j.issn.1003-7985.2019.02.019]

BiHom-H-pseudoalgebras and their constructions()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 2
Research Field:
Mathematics, Physics, Mechanics
Publishing date:


BiHom-H-pseudoalgebras and their constructions
Shi Guodong Wang Shuanhong
School of Mathematics, Southeast University, Nanjing 211189, China
BiHom-associative H-pseudoalgebrsa Yau twist tensor product BiHom-associative H-pseudoalgebras
The definition and an example of BiHom-associative H-pseudoalgebra are given. A BiHom-H-pseudoalgebra is an H-pseudoalgebra(A, μ)with two maps α, β∈HomHH(A, A)satisfying the BiHom-associative law which generalizes BiHom-associative algebras and associative H-pseudoalgebras. Secondly, a method which is called the Yau twist of constructing BiHom-associative H-pseudoaglebra(A, (IHHHHα)μ, α, β)from an associative H-pseudoalgebra(A, μ)and two maps of H-pseudoalgebras α, β, is introduced. Thirdly, a generalized form of the Yau twist is discussed. It concerns constructing a BiHom-associative H-pseudoalgebra(A, μ(αβ), α~α, β~β)from a BiHom-associative H-pseudoalgebra(A, μ, α~, β~)and two maps α, β∈HomHH(A, A). Finally, a method of constructing BiHom-associative H-pseudoalgebra on tensor product space AB of two BiHom-associative H- pseudoalgebras is given.


[1] Graziani G, Makhlouf A, Menini C, et al. BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras[J]. Symmetry, Integrability and Geometry: Methods and Applications, 2015, 11:086-1-086-34. DOI:10.3842/sigma.2015.086.
[2] Makhlouf A, Silvestrov S D. Hom-algebra structures[J]. Journal of Generalized Lie Theory and Applications, 2008, 2(2): 51-64. DOI:10.4303/jglta/s070206.
[3] Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras[J]. Journal of Algebra and Its Applications, 2010, 9(4): 553-589. DOI:10.1142/s0219498810004117.
[4] Yau D. Hom-algebras and homology[J]. Journal of Lie Theory, 2009, 19(2): 409-421.
[5] Bakalov B, D’Andrea A, Kac V G. Theory of finite pseudoalgebras[J]. Advances in Mathematics, 2001, 162(1): 1-140. DOI:10.1006/aima.2001.1993.
[6] Kac V. Vertex algebras for beginners[M]. Providence, Rhode Island: American Mathematical Society, 1998. DOI:10.1090/ulect/010.
[7] Dorfman I. Dirac structures and integrability of nonlinear evolution equations [M]. New York: John Wiley & Sons, 1993.
[8] Gel’Fand I M, Dorfman I Y. Hamiltonian operators and infinite-dimensional Lie algebras[J]. Functional Analysis and Its Applications, 1982, 15(3):173-187. DOI:10.1007/bf01089922.
[9] Xu X P. Equivalence of conformal superalgebras to Hamiltonian superoperators[J]. Algebra Colloquium, 2001, 8(1): 63-92.
[10] Sun Q X. Generalization of H-pseudoalgebraic structures[J]. Journal of Mathematical Physics, 2012, 53(1): 012105. DOI:10.1063/1.3665708.
[11] Wu Z X. Leibniz H-pseudoalgebras[J]. Journal of Algebra, 2015, 437: 1-33. DOI:10.1016/j.jalgebra.2015.04.019.


Biographies: Shi Guodong(1987—), male, graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.11371088, 11571173, 11871144), the Natural Science Foundation of Jiangsu Province(No.BK20171348).
Citation: Shi Guodong, Wang Shuanhong.BiHom-H-pseudoalgebras and their constructions[J].Journal of Southeast University(English Edition), 2019, 35(2):269-272.DOI:10.3969/j.issn.1003-7985.2019.02.019.
Last Update: 2019-06-20