|Table of Contents|

[1] Li Haixia, Ji Aiming, Zhu Canyan, et al. Influence of the finite size effect of Si(001)/SiO2 interfaceon the gate leakage current in nano-scale transistors [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 341-350. [doi:10.3969/j.issn.1003-7985.2019.03.010]

Influence of the finite size effect of Si(001)/SiO2 interfaceon the gate leakage current in nano-scale transistors()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 3
Research Field:
Electronic Science and Engineering
Publishing date:


Influence of the finite size effect of Si(001)/SiO2 interfaceon the gate leakage current in nano-scale transistors
Li Haixia1 2 Ji Aiming1 Zhu Canyan1 Mao Lingfeng3
1School of Rail Transportation, Soochow University, Suzhou 215006, China
2School of Information Engineering, Suqian College, Suqian 223800, China
3School of Computer & Communication Engineering, University of Science & Technology Beijing, Beijing 100083, China
finite size effect tunneling current nano-scale transistor
With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.


[1] Mudanai S, Fan Y Y, Ouyang Q, et al. Modeling of direct tunneling current through gate dielectric stacks[J].IEEE Transactions on Electron Devices, 2000, 47(10): 1851-1857. DOI:10.1109/16.870561.
[2] Feldman L C, Gusev E P, Garfunkel E. Ultrathin dielectrics in silicon microelectronics[M]//Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. Dordrecht: Springer Netherlands, 1998: 1-24. DOI:10.1007/978-94-011-5008-8_1.
[3] Hollinger G, Himpsel F J. Probing the transition layer at the SiO2-Si interface using core level photoemission[J]. Applied Physics Letters, 1984, 44(1): 93-95. DOI:10.1063/1.94565.
[4] Evans M H, Caussanel M, Schrimpf R D, et al. First-principles modeling of double-gate UTSOI MOSFETs[C]//IEEE International Electron Devices Meeting. Tempe, Arizon, USA, 2005:577-580. DOI:10.1109/iedm.2005.1609420.
[5] Hakala M H, Foster A S, Gavartin J L, et al. Interfacial oxide growth at silicon/high-k oxide interfaces: First principles modeling of the Si-HfO2 interface[J]. Journal of Applied Physics, 2006, 100(4): 043708. DOI:10.1063/1.2259792.
[6] Green M L, Gusev E P, Degraeve R, et al. Ultrathin(<4 nm)SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits[J]. Journal of Applied Physics, 2001, 90(5): 2057-2121. DOI:10.1063/1.1385803.
[7] Poindexter E H, Gerardi G J, Rueckel M E, et al. Electronic traps and Pb centers at the Si/SiO2 interface: Band-gap energy distribution[J]. Journal of Applied Physics, 1984, 56(10): 2844-2849. DOI:10.1063/1.333819.
[8] Muller D A, Sorsch T, Moccio S, et al. The electronic structure at the atomic scale of ultrathin gate oxides[J].Nature, 1999, 399(6738): 758-761. DOI:10.1038/21602.
[9] Watanabe T, Tatsumura K, Ohdomari I. SiO2/Si interface structure and its formation studied by large-scale molecular dynamics simulation[J]. Applied Surface Science, 2004, 237(1/2/3/4): 125-133. DOI:10.1016/j.apsusc.2004.06.044.
[10] Steinrück H G, Schiener A, Schindler T, et al. Nanoscale structure of Si/SiO2/organics interfaces[J]. ACS Nano, 2014, 8(12): 12676-12681. DOI:10.1021/nn5056223.
[11] Kovaevi G, Pivac B. Structure, defects, and strain in silicon-silicon oxide interfaces[J].Journal of Applied Physics, 2014, 115(4): 043531. DOI:10.1063/1.4862809.
[12] Bongiorno A, Pasquarello A. Atomistic structure of the Si(100)-SiO2 interface: A synthesis of experimental data[J]. Applied Physics Letters, 2003, 83(7): 1417-1419. DOI:10.1063/1.1604470.
[13] Diebold A C, Venables D, Chabal Y, et al. Characterization and production metrology of thin transistor gate oxide films[J]. Materials Science in Semiconductor Processing, 1999, 2(2): 103-147. DOI:10.1016/S1369-8001(99)00009-8.
[14] van Ginhoven R M, Hjalmarson H P. Atomistic simulation of Si/SiO2 interfaces[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 255(1): 183-187. DOI:10.1016/j.nimb.2006.11.022.
[15] Pasquarello A, Hybertsen M S, Car R. Structurally relaxed models of the Si(001)-SiO2 interface[J]. Applied Physics Letters, 1996, 68(5): 625-627. DOI:10.1063/1.116489.
[16] Yamasaki T, Kaneta C, Uchiyama T, et al. Geometric and electronic structures of SiO2/Si(001)interfaces[J]. Physical Review B, 2001, 63(11): 115314. DOI:10.1103/physrevb.63.115314.
[17] Tu Y H, Tersoff J. Structure and energetics of the Si-SiO2 interface[J]. Physical Review Letters, 2000, 84(19): 4393-4396. DOI:10.1103/physrevlett.84.4393.
[18] Kovaevi G, Pivac B. Modeling the interface between crystalline silicon and silicon oxide polymorphs[J].Physica Status Solidi, 2013, 210(4): 717-722. DOI:10.1002/pssa.201200447.
[19] Rani E, Ingale A, Phase D M, et al. Band gap tuning in Si-SiO2 nanocomposite: Interplay of confinement effect and surface/interface bonding[J]. Applied Surface Science, 2017, 425: 1089-1094. DOI:10.1016/j.apsusc.2017.07.133.
[20] Rani E, Ingale A A, Chaturvedi A, et al. Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study[J]. Journal of Raman Spectroscopy, 2016, 47(4): 457-467. DOI:10.1002/jrs.4832.
[21] Rani E, Ingale A A, Chaturvedi A, et al. Resonance Raman mapping as a tool to monitor and manipulate Si nanocrystals in Si-SiO2 nanocomposite[J]. Applied Physics Letters, 2015, 107(16): 163112. DOI:10.1063/1.4934664.
[22] Wen J L, Ma T B, Zhang W W, et al. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field[J]. Applied Surface Science, 2016, 390: 216-223. DOI:10.1016/j.apsusc.2016.08.082.
[23] Ono T, Egami Y, Kutsuki K, et al. First-principles study of the electronic structures and dielectric properties of the Si/SiO2 interface[J]. Journal of Physics—Condensed Matter, 2001, 19(36): 365202.
[24] Corsetti F, Mostofi A A. A first-principles study of As doping at a disordered Si-SiO2 interface[J]. Journal of Physics: Condensed Matter, 2014, 26(5): 055002. DOI:10.1088/0953-8984/26/5/055002.
[25] Li H F, Guo Y Z, Robertson J, et al. Ab-initio simulations of higher Miller index Si: SiO2 interfaces for fin field effect transistor and nanowire transistors[J]. Journal of Applied Physics, 2016, 119(5): 054103. DOI:10.1063/1.4941272.
[26] Kim B H, Kim G, Park K, et al. Effects of suboxide layers on the electronic properties of Si(100)/SiO2 interfaces: Atomistic multi-scale approach[J]. Journal of Applied Physics, 2013, 113(7): 073705. DOI:10.1063/1.4791706.
[27] Ono T. First-principles study of leakage current through a Si/SiO2 interface[J]. Physical Review B, 2009, 79(19): 195326. DOI:10.1103/physrevb.79.195326.
[28] Markov S, Sushko P, Fiegna C, et al. Fromab initioproperties of the Si-SiO2 interface, to electrical characteristics of metal-oxide-semiconductor devices[J]. Journal of Physics: Conference Series, 2010, 242: 012010. DOI:10.1088/1742-6596/242/1/012010.
[29] Zafar S, Liu Q, Irene E A. Study of tunneling current oscillation dependence on SiO2 thickness and Si roughness at the Si/SiO2 interface[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(1): 47-53. DOI:10.1116/1.579442.
[30] Sacconi F, di Carlo A, Lugli P, et al. Full band approach to tunneling in MOS structures[J].IEEE Transactions on Electron Devices, 2004, 51(5): 741-748. DOI:10.1109/ted.2004.826862.
[31] Yamada Y, Tsuchiya H, Ogawa M. A first principles study on tunneling current through Si/SiO2/Si structures[J]. Journal of Applied Physics, 2009, 105(8): 083702. DOI:10.1063/1.3106115.
[32] Herman F, Batra I P, Kasowski R V. The physics of SiO2 and its interfaces[M]. Oxford: Pergamon, 1978:333-338.
[33] Seino K, Bechstedt F. Effective density of states and carrier masses for Si/SiO2 superlattices from first principles[J]. Semiconductor Science and Technology, 2011, 26(1): 014024. DOI:10.1088/0268-1242/26/1/014024.
[34] Carrier P, Lewis L J, Dharma-Wardana M W C. Electron confinement and optical enhancement in Si/SiO2 superlattices[J]. Physical Review B, 2001, 64(19): 195330. DOI:10.1103/physrevb.64.195330.
[35] Seino K, Wagner J M, Bechstedt F. Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures[J]. Applied Physics Letters, 2007, 90(25): 253109. DOI:10.1063/1.2750526.
[36] Zhu H W, Liu Y S, Mao L F, et al. Theoretical study of the SiO2/Si interface and its effect on energy band profile and MOSFET gate tunneling current[J]. Journal of Semiconductors, 2010, 31(8): 082003. DOI:10.1088/1674-4926/31/8/082003.
[37] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J].Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. DOI:10.1088/0953-8984/14/11/301.
[38] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77(18): 3865. DOI:10.1103/physrevlett.77.3865.
[39] Jie W J, Chen X, Li D, et al. Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets[J]. Angewandte Chemie (International Edition in English), 2015, 54(4): 1185-1189. DOI:10.1002/anie.201409837.
[40] Niedfeldt K, Carter E A, Nordlander P. First principles resonance widths for Li near an Al(001)surface: Predictions of scattered ion neutralization probabilities[J].The Journal of Chemical Physics, 2004, 121(8): 3751-3755. DOI:10.1063/1.1777218.
[41] Lu Z H, Lockwood D J, Baribeau J M. Quantum confinement and light emission in SiO2/Si superlattices[J]. Nature, 1995, 378(6554): 258-260. DOI:10.1038/378258a0.
[42] Chen H X, Shi D N, Qi J S, et al. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires[J].Physics Letters A, 2009, 373(3): 371-375. DOI:10.1016/j.physleta.2008.11.060.
[43] van de Walle C G, Martin R M. Theoretical study of band offsets at semiconductor interfaces[J].Physical Review B, 1987, 35(15): 8154. DOI:10.1103/physrevb.35.8154.
[44] Yamashita Y, Yamamoto S, Mukai K. Direct observation of site-specific valence electronic structure at the SiO2/Si interface[J]. Physical Review B, 2006, 73(4): 45336.
[45] Alkauskas A, Broqvist P, Devynck F, et al. Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations[J]. Physical Review Letters, 2008, 101(10): 106802. DOI:10.1103/physrevlett.101.106802.
[46] Kimura K, Nakajima K. Compositional transition layer in SiO2/Si interface observed by high-resolution RBS[J]. Applied Surface Science, 2003, 216(1/2/3/4): 283-286. DOI:10.1016/s0169-4332(03)00386-6.
[47] Ando Y, Itoh T. Calculation of transmission tunneling current across arbitrary potential barriers[J].Journal of Applied Physics, 1987, 61(4): 1497-1502. DOI:10.1063/1.338082.
[48] Mao L F, Tan C H, Xu M Z. The effect of image potential on electron transmission and electric current in the direct tunneling regime of ultra-thin MOS structures[J]. Microelectronics Reliability, 2001, 41(6): 927-931. DOI:10.1016/s0026-2714(01)00037-3.
[49] Mao L F, Tan C H, Xu M Z. Estimate of width of transition region of barrier for thin film insulator MOS structure using Fowler-Nordheim tunneling current[J]. Chinese Journal of Semiconductors, 2001, 22(2): 228-233.(in Chinese)
[50] Jeppson K O. Influence of the channel width on the threshold voltage modulation in m.o.s.f.e.t.s[J].Electronics Letters, 1975, 11(14): 297–299. DOI:10.1049/el:19750225.
[51] Fuse G, Fukumoto M, Shinohara A, et al. A new isolation method with boron-implanted sidewalls for controlling narrow-width effect[J].IEEE Transactions on Electron Devices, 1987, 34(2): 356-360. DOI:10.1109/t-ed.1987.22930.
[52] Yeo Y C, Lu Q, Lee W C, et al. Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric[J].IEEE Electron Device Letters, 2000, 21(11): 540-542. DOI:10.1109/55.877204.


Biographies: Li Haixia(1983—), female, master; Mao Lingfeng(corresponding author), male, doctor, professor, mail_lingfeng@aliyun.com.
Foundation items: The National Natural Science Foundation of China(No. 61774014), Postgraduate Research & Practice Innovation Program of Jiangsu Province(No. KYZZ15_0331), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB510060).
Citation: Li Haixia, Ji Aiming, Zhu Canyan, et al.Influence of the finite size effect of Si(001)/SiO2 interface on the gate leakage current in nano-scale transistors[J].Journal of Southeast University(English Edition), 2019, 35(3):341-350.DOI:10.3969/j.issn.1003-7985.2019.03.010.
Last Update: 2019-09-20