|Table of Contents|

[1] Ma Yixuan, Huang Juan, Cao Chong, Cai Wenshu, et al. Effects of silver nanoparticles on resistance characteristicsof the wetland plant Typha orientalis in a hydroponic system [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 381-388. [doi:10.3969/j.issn.1003-7985.2019.03.015]

Effects of silver nanoparticles on resistance characteristicsof the wetland plant Typha orientalis in a hydroponic system()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 3
Research Field:
Environmental Science and Engineering
Publishing date:


Effects of silver nanoparticles on resistance characteristicsof the wetland plant Typha orientalis in a hydroponic system
Ma Yixuan Huang Juan Cao Chong Cai Wenshu Xiao Jun Yan Chunni
School of Civil Engineering, Southeast University, Nanjing 210096, China
silver nanoparticles(AgNPs) wetland plants Typha orientalis physiological and biochemical characteristics antioxidase
To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles(AgNPs), the changes in the physiological and biochemical characteristics(including the superoxide dismutase(SOD)activity, catalase(CAT)activity, peroxidase(POD)activity, soluble protein content, and chlorophyll content)of Typha orientalis exposed to different concentrations of AgNPs solutions(0, 0.1, 1, 20 and 40 mg/L)were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis, but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.


[1] Nowack B, Krug H F, Height M. 120 years of nanosilver history: Implications for policy makers[J]. Environmental Science & Technology, 2011, 45(4): 1177-1183. DOI:10.1021/es103316q.
[2] Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications[J]. Water Research, 2008, 42(18): 4591-4602. DOI:10.1016/j.watres.2008.08.015.
[3] Bradford A, Handy R D, Readman J W, et al. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments[J].Environmental Science & Technology, 2009, 43(12): 4530-4536. DOI:10.1021/es9001949.
[4] Oleszczuk P, Josko I, Xing B S. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2011, 186(1): 436-442. DOI:10.1016/j.jhazmat.2010.11.028.
[5] Keller A A, Lazareva A. Predicted releases of engineered nanomaterials: From global to regional to local[J]. Environmental Science & Technology Letters, 2014, 1(1): 65-70. DOI:10.1021/ez400106t.
[6] Brix H. Do macrophytes play a role in constructed treatment wetlands?[J]. Water Science and Technology, 1997, 35(5): 11-17. DOI:10.2166/wst.1997.0154.
[7] Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2007, 29(2): 173-191. DOI:10.1016/j.ecoleng.2006.06.013.
[8] Wang W X. Comparison of metal uptake rate and absorption efficiency in marine bivalves[J]. Environmental Toxicology and Chemistry, 2001, 20(6): 1367-1373. DOI:10.1002/etc.5620200628.
[9] Ribeiro F, Gallego-Urrea J A, Jurkschat K, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio[J]. Science of the Total Environment, 2014, 466-467: 232-241. DOI:10.1016/j.scitotenv.2013.06.101.
[10] Bao D P, Oh Z G, Chen Z. Characterization of silver nanoparticles internalized by arabidopsis plants using single particle ICP-MS analysis[J]. Frontiers in Plant Science, 2016, 7: 32. DOI:10.3389/fpls.2016.00032.
[11] Sheng Z Y, Liu Y. Potential impacts of silver nanoparticles on bacteria in the aquatic environment[J]. Journal of Environmental Management, 2017, 191: 290-296. DOI:10.1016/j.jenvman.2017.01.028.
[12] Huang Y F, Qiu W W, Yu Z H, et al. Toxic effect of cadmium adsorbed by different sizes of nano-hydroxyapatite on the growth of rice seedlings[J]. Environmental Toxicology and Pharmacology, 2017, 52: 1-7. DOI:10.1016/j.etap.2017.03.005.
[13] Singh D, Kumar A. Effects of nano silver oxide and silver ions on growth of vigna radiata[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(3): 379-384. DOI:10.1007/s00128-015-1595-4.
[14] Judy J D, Kirby J K, Creamer C, et al. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil[J]. Environmental Pollution, 2015, 206: 256-263. DOI:10.1016/j.envpol.2015.07.002.
[15] Nair P M G, Chung I M. Physiological and molecular level effects of silver nanoparticles exposure in rice(Oryza sativa L.)seedlings[J]. Chemosphere, 2014, 112: 105-113. DOI:10.1016/j.chemosphere.2014.03.056.
[16] Yin L Y, Cheng Y W, Espinasse B, et al. More than the ions: The effects of silver nanoparticles onlolium multiflorum[J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. DOI:10.1021/es103995x.
[17] Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology, 2009, 43(24): 9473-9479. DOI:10.1021/es901695c.
[18] El-Temsah Y S, Joner E J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil[J]. Environmental Toxicology, 2012, 27(1): 42-49. DOI:10.1002/tox.20610.
[19] Lombardi L, Sebastiani L. Copper toxicity in Prunus cerasifera: Growth and antioxidant enzymes responses of in vitro grown plants[J]. Plant Science, 2005, 168(3): 797-802. DOI:10.1016/j.plantsci.2004.10.012.
[20] Wu J H, Yang L, Sun G R. Generation of activated oxygen and change of cell defense enzyme activity in leaves of maize seedling under the stress of low temperature[J]. Bulletin of Botanical Research, 2004, 24(4): 456-459. DOI:10.3969/j.issn.1673-5102.2004.04.023. (in Chinese)
[21] Wang R R, Ding S H, Hu X S, et al. Effects of high hydrostatic pressure on chlorophylls and chlorophyll-protein complexes in spinach[J]. European Food Research and Technology, 2016, 242(9): 1533-1543. DOI:10.1007/s00217-016-2654-8.
[22] Baskar V, Venkatesh J, Park S W. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis[J]. Environmental Science and Pollution Research, 2015, 22(22): 17672-17682. DOI:10.1007/s11356-015-4864-1.
[23] Yin L Y, Colman B P, McGill B M, et al. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants[J]. PLoS One, 2012, 7(10): e47674. DOI:10.1371/journal.pone.0047674.
[24] Sheng Z Y, Liu Y. Potential impacts of silver nanoparticles on bacteria in the aquatic environment[J]. Journal of Environmental Management, 2017, 191: 290-296. DOI:10.1016/j.jenvman.2017.01.028.
[25] Wang S G, Dai D W, Song S, et al. Arbuscular mycorrhizal(AM)status in urban wetland plants and its impact factors[J]. Aquatic Botany, 2018, 150: 33-45. DOI:10.1016/j.aquabot.2018.07.002.
[26] Zhou H D, Liu X J, Chen X M, et al. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers[J]. Science of the Total Environment, 2018, 636: 1291-1302. DOI:10.1016/j.scitotenv.2018.04.384.
[27] Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287. DOI:10.1016/0003-2697(71)90370-8.
[28] Cosio C, Dunand C. Transcriptome analysis of various flower and silique development stages indicates a set of class Ⅲ peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana[J]. BMC Genomics, 2010, 11(1): 528-544. DOI:10.1186/1471-2164-11-528.
[29] Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32(1): 93-101. DOI:10.1093/jxb/32.1.93.
[30] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. DOI:10.1016/0003-2697(76)90527-3.
[31] Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15. DOI:10.1104/pp.24.1.1.
[32] Lowry G V, Espinasse B P, Badireddy A R, et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland[J]. Environmental Science & Technology, 2012, 46(13): 7027-7036. DOI:10.1021/es204608d.
[33] Nouri J, Lorestani B, Yousefi N, et al. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine(Hamedan, Iran)[J]. Environmental Earth Sciences, 2011, 62(3): 639-644. DOI:10.1007/s12665-010-0553-z.
[34] Lin C C, Kao C H. Effect of NaCl stress on H2O2 metabolism in rice leaves[J]. Plant Growth Regul, 2000, 30(2):151-155.
[35] Schrader M, Fahimi H D. Peroxisomes and oxidative stress[J].Biochimica et Biophysica Acta(BBA)Molecular Cell Research, 2006, 1763(12): 1755-1766. DOI:10.1016/j.bbamcr.2006.09.006.
[36] Peng M. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks[J]. Phytopathology, 1992, 82(6): 696-699. DOI:10.1094/phyto-82-696.
[37] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist, 1993, 125(1): 27-58. DOI:10.1111/j.1469-8137.1993.tb03863.x.
[38] Thwala M, Musee N, Sikhwivhilu L, et al. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters[J]. Environmental Science: Processes & Impacts, 2013, 15(10): 1830-1843. DOI:10.1039/c3em00235g.
[39] He J, Ji Z X, Wang Q Z, et al. Effect of Cu and Pb pollution on the growth and antionxidant enzyme activity of Suaeda heteroptera[J]. Ecological Engineering, 2016, 87: 102-109. DOI:10.1016/j.ecoleng.2015.11.004.
[40] Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life[J]. Plant Physiology, 2006, 141(2): 312-322. DOI:10.1104/pp.106.077073.
[41] Du Y Y, Wang P C, Chen J, et al. Comprehensive functional analysis of the catalase gene family inarabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1318-1326. DOI:10.1111/j.1744-7909.2008.00741.x.
[42] Uru�E7; Parlak K, Demirezen Yilmaz D. Ecophysiological tolerance of Lemna gibba L. exposed to cadmium[J]. Ecotoxicology and Environmental Safety, 2013, 91: 79-85. DOI:10.1016/j.ecoenv.2013.01.009.
[43] Balen B, Tkalec M, �160;ikic S, et al. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc[J]. Ecotoxicology, 2011, 20(4): 815-826. DOI:10.1007/s10646-011-0633-1.
[44] Nair P M G, Park S Y, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius[J]. Chemosphere, 2013, 92(5): 592-599. DOI:10.1016/j.chemosphere.2013.03.060.
[45] Ma C X, Chhikara S, Xing B S, et al. Physiological and molecular response of arabidopsis thaliana(L.)to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 768-778. DOI:10.1021/sc400098h.
[46] Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza[J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1880-1886. DOI:10.1002/etc.1899.
[47] Oukarroum A, Polchtchikov S, Perreault F, et al. Temperature influence on silver nanoparticles inhibitory effect on photosystem Ⅱ photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta[J]. Environmental Science and Pollution Research, 2012, 19(5): 1755-1762. DOI:10.1007/s11356-011-0689-8.
[48] Qian H F, Peng X F, Han X, et al. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J]. Journal of Environmental Sciences, 2013, 25(9): 1947-1956. DOI:10.1016/s1001-0742(12)60301-5.
[49] Ma Y H, Kuang L L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279. DOI:10.1016/j.chemosphere.2009.10.050.
[50] Sharma P, Bhatt D, Zaidi M G H, et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea[J]. Applied Biochemistry and Biotechnology, 2012, 167(8): 2225-2233. DOI:10.1007/s12010-012-9759-8.


Biographies: Ma Yixuan(1995—), male, Ph.D. candidate; Huang Juan(corresponding author), female, doctor, associate professor, seu070703@126.com.
Foundation item: The National Natural Science Foundation of China(No.51479034, 5151101102).
Citation: Ma Yixuan, Huang Juan, Cao Chong, et al. Effects of silver nanoparticles on resistance characteristics of the wetland plant Typha orientalis in a hydroponic system[J].Journal of Southeast University(English Edition), 2019, 35(3):381-388.DOI:10.3969/j.issn.1003-7985.2019.03.015.
Last Update: 2019-09-20