|Table of Contents|

[1] Cheng Juan, Chen Xianhua,. Travel time prediction model of freewaybased on gradient boosting decision tree [J]. Journal of Southeast University (English Edition), 2019, 35 (3): 393-398. [doi:10.3969/j.issn.1003-7985.2019.03.017]

Travel time prediction model of freewaybased on gradient boosting decision tree()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 3
Research Field:
Traffic and Transportation Engineering
Publishing date:


Travel time prediction model of freewaybased on gradient boosting decision tree
Cheng Juan Chen Xianhua
School of Transportation, Southeast University, Nanjing 211189, China
gradient boosting decision tree(GBDT) travel time prediction freeway traffic state parameter
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree(GBDT)is proposed. Eleven variables(namely, travel time in current period Ti, traffic flow in current period Qi, speed in current period Vi, density in current period Ki, the number of vehicles in current period Ni, occupancy in current period Ri, traffic state parameter in current period Xi, travel time in previous time period Ti-1, etc.)are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation(BP)neural network model and the support vector machine(SVM)model. Travel time in current period Ti is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.


[1] Lee W H, Tseng S S, Tsai S H. A knowledge based real-time travel time prediction system for urban network[J]. Expert Systems with Applications, 2009, 36(3): 4239-4247. DOI:10.1016/j.eswa.2008.03.018.
[2] Miranda D M, Concei�E7;�E3;o S V. The vehicle routing problem with hard time windows and stochastic travel and service time[J]. Expert Systems with Applications, 2016, 64: 104-116. DOI:10.1016/j.eswa.2016.07.022.
[3] Oh S, Byon Y J, Jang K, et al. Short-term travel-time prediction on highway: A review on model-based approach[J]. KSCE Journal of Civil Engineering, 2018, 22(1): 298-310. DOI:10.1007/s12205-017-0535-8.
[4] Farokhi Sadabadi K, Hamedi M, Haghani A. Evaluating moving average techniques in short-term travel time prediction using an AVI data set[C]//Transportation Research Board 89th Annual Meeting. Washington, DC, USA, 2010.
[5] Julio N, Giesen R, Lizana P. Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms[J]. Research in Transportation Economics, 2016, 59: 250-257. DOI:10.1016/j.retrec.2016.07.019.
[6] Liu W M, Li S S. Freeway travel time prediction simulation research based on big data[J]. Computer Simulation, 2017, 34(3): 395-399.(in Chinese)
[7] Cai H R, He L L. A combined offline travel time prediction model based on speed matrix and artificial neural network[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017(6): 851-858.(in Chinese)
[8] Yu B, Yang Z Z, Yao B Z. Bus arrival time prediction using support vector machines[J]. Journal of Intelligent Transportation Systems, 2006, 10(4): 151-158. DOI:10.1080/15472450600981009.
[9] Reddy K K, Anil Kumar B, Vanajakshi L. Bus travel time prediction under high variability conditions[J]. Current Science, 2016, 111(4): 700. DOI:10.18520/cs/v111/i4/700-711.
[10] Sun X Y, Zhang H, Tian F L, et al. The use of a machine learning method to predict the real-time link travel time of open-pit trucks[J]. Mathematical Problems in Engineering, 2018, 2018: 1-14. DOI:10.1155/2018/4368045.
[11] Kumar B A, Vanajakshi L, Subramanian S C. Bus travel time prediction using a time-space discretization approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 308-332. DOI:10.1016/j.trc.2017.04.002.
[12] Zhao J D, Guo Y J, Duan X H. Dynamic path planning of emergency vehicles based on travel time prediction[J]. Journal of Advanced Transportation, 2017, 2017: 1-14. DOI:10.1155/2017/9184891.
[13] Gal A, Mandelbaum A, Schnitzler F, et al. Traveling time prediction in scheduled transportation with journey segments[J]. Information Systems, 2017, 64: 266-280. DOI:10.1016/j.is.2015.12.001.
[14] Zhao J D, Gao Y, Tang J J, et al. Highway travel time prediction using sparse tensor completion tactics and K-nearest neighbor pattern matching method[J]. Journal of Advanced Transportation, 2018, 2018: 1-16. DOI:10.1155/2018/5721058.
[15] Ahmed M M, Abdel-Aty M. Application of stochastic gradient boosting technique to enhance reliability of real-time risk assessment[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2386: 26-34. DOI:10.3141/2386-04.
[16] Friedman J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378. DOI:10.1016/s0167-9473(01)00065-2.
[17] Friedman J H, Meulman J J. Multiple additive regression trees with application in epidemiology[J]. Statistics in Medicine, 2003, 22(9): 1365-1381. DOI:10.1002/sim.1501.
[18] National Research Council. HCM2010: Highway capacity manual [M]. 5th ed. Washington, DC, USA: Transportation Research Board, 2010.
[19] Zhang Y R, Haghani A. A gradient boosting method to improve travel time prediction[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 308-324. DOI:10.1016/j.trc.2015.02.019.


Biographies: Cheng Juan(1983—), female, Ph.D. candidate; Chen Xianhua(corresponding author), male, doctor, professor, chenxh@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.51478114, 51778136).
Citation: Cheng Juan, Chen Xianhua. Travel time prediction model of freeway based on gradient boosting decision tree[J].Journal of Southeast University(English Edition), 2019, 35(3):393-398.DOI:10.3969/j.issn.1003-7985.2019.03.017.
Last Update: 2019-09-20