|Table of Contents|

[1] Nguyen Van Liem, Zhang Jianrun, Wu Zhenpeng, et al. Performance analysis of semi-active cab’s hydraulic systemof the vibratory roller using optimal fuzzy-PID control [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 399-407. [doi:10.3969/j.issn.1003-7985.2019.04.001]
Copy

Performance analysis of semi-active cab’s hydraulic systemof the vibratory roller using optimal fuzzy-PID control()
振动压路机驾驶室半主动液阻隔振系统 的优化fuzzy-PID控制性能分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
399-407
Research Field:
Traffic and Transportation Engineering
Publishing date:
2019-12-30

Info

Title:
Performance analysis of semi-active cab’s hydraulic systemof the vibratory roller using optimal fuzzy-PID control
振动压路机驾驶室半主动液阻隔振系统 的优化fuzzy-PID控制性能分析
Author(s):
Nguyen Van Liem1, 2, Zhang Jianrun1, Wu Zhenpeng2, Yang Xiuzhi2
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi 435003, China
阮文廉1, 2, 张建润1, 吴振鹏2, 杨秀芝2
1东南大学机械工程学院, 南京 211189; 2湖北理工学院机电工程学院, 黄石 435003
Keywords:
vibratory roller off-road terrains semi-active cab’s hydraulic system optimal fuzzy-PID(proportional integral derivative)control
振动压路机 变形土壤地面 驾驶室半主动液阻隔振系统 优化fuzzy-PID控制
PACS:
U461.3
DOI:
10.3969/j.issn.1003-7985.2019.04.001
Abstract:
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control, a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software. The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions. The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions. The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle, especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling. With SHM using the optimal fuzzy-PID control, the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle, particularly at the speed from 6 to 7 km/h of the vehicle traveling.
为了分析振动压路机驾驶室液阻隔振的优化fuzzy-PID控制的性能, 基于Matlab/Simulink软件建立了振动压路机与变形土壤地面相互作用的非线性动力学模型.以驾驶员座椅垂向和驾驶室的俯仰角的加权加速度均方根RMS值为目标函数.对不同工作工况下半主动液阻隔振的优化fuzzy-PID控制进行了仿真与性能分析.研究结果表明, 不同土壤地面变形对驾驶员乘坐舒适性与驾驶室俯仰角均有明显影响.特别地, 车辆以8~12 km/h范围内的速度行驶在变形非常差的Grenville土壤上.此外, 在不同工况下对振动压路机驾驶室半主动液阻隔振的优化fuzzy-PID控制, 驾驶员乘坐舒适性与驾驶室俯仰角均有明显提高, 特别是车辆以6~7 km/h范围内的速度行驶.

References:

[1] Adam D, Kopf F. Theoretical analysis of dynamically loaded soils[C]//Proceedings of European Workshop Compaction of Soils and Granular Materials. Paris, France, 2000: 207-220.
[2] Kordestani A, Rakheja S, Marcotte PhD P, et al. Analysis of ride vibration environment of soil compactors[J]. SAE International Journal of Commercial Vehicles, 2010, 3(1): 259-272. DOI:10.4271/2010-01-2022.
[3] Nguyen V L, Zhang J R, Hua W L, et al. Ride quality evaluation of the soil compactor cab supplemented by auxiliary hydraulic mounts via simulation and experiment [J]. Journal of Southeast University(English Edition), 2019, 35(3): 273-280. DOI:10.3969/j.issn.1003-7985.2019.03.001.
[4] Bekker M. Introduction to terrain-vehicle systems[M]. Ann Arbor, USA: University of Michigan Press, 1969.
[5] Wong J Y. Data processing methodology in the characterization of the mechanical properties of terrain[J]. Journal of Terramechanics, 1980, 17(1): 13-41. DOI:10.1016/0022-4898(80)90014-2.
[6] Mitschke M. Dynamik der kraftfahrzeuge[M]. Berlin, Germany: Springer-Verlag, 1972. DOI:10.1007/978-3-662-11585-5.
[7] Nguyen V L, Zhang J R, Jiao R Q, et al. Effect of the road-off terrains on the ride comfort of construction vehicles [J]. Journal of Southeast University(English Edition), 2019, 35(2): 191-197. DOI:10.3969/j.issn.1003-7985.2019.02.008.
[8] Nguyen V L, Zhang J R, Le V Q, et al. Vibration analysis and modeling of an off-road vibratory roller equipped with three different cab’s isolation mounts [J]. Shock and Vibration, 2018, 2018: 1-17. DOI:10.1155/2018/8527574.
[9] Yildirim 瘙塁. Vibration control of suspension systems using a proposed neural network [J]. Journal of Sound and Vibration, 2004, 277(4/5): 1059-1069. DOI:10.1016/j.jsv.2003.09.057.
[10] Kasemi B, Muthalif A G A, Rashid M M, et al. Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper[J]. Procedia Engineering, 2012, 41: 1221-1227. DOI:10.1016/j.proeng.2012.07.304.
[11] Nguyen S D, Nguyen Q H, Choi S B. A hybrid clustering based fuzzy structure for vibration control—Part 2: An application to semi-active vehicle seat-suspension system[J]. Mechanical Systems and Signal Processing, 2015, 56/57: 288-301. DOI:10.1016/j.ymssp.2014.10.019.
[12] Wang W, Song Y L, Xue Y B, et al. An optimal vibration control strategy for a vehicle’s active suspension based on improved cultural algorithm[J]. Applied Soft Computing, 2015, 28: 167-174. DOI:10.1016/j.asoc.2014.11.047.
[13] Chen Y, Wang Z L, Qiu J, et al. Hybrid fuzzy skyhook surface control using multi-objective microgenetic algorithm for semi-active vehicle suspension system ride comfort stability analysis [J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(4): 1-14. DOI: 10. 1115/1.4006220.
[14] International Organization for Standardization. ISO/TC108/SC2/WG4 N57 Reporting vehicle road surface irregularities [S]. Stuttgart, Germany: Thieme Medical Publishers, 1982.
[15] Mamdani E H. Advances in the linguistic synthesis of fuzzy controllers[J]. International Journal of Man-Machine Studies, 1976, 8(6): 669-678. DOI:10.1016/s0020-7373(76)80028-4.
[16] Nguyen V L, Zhang J R, Le V Q, et al. Performance analysis of air suspension system of heavy truck with semi-active fuzzy control [J]. Journal of Southeast University(English Edition), 2017, 33(2): 159-165. DOI:10.3969/j.issn.1003-7985.2017.02.006.
[17] Nariman-Zadeh N, Salehpour M, Jamali A, et al. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm(MUGA)[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 543-551. DOI:10.1016/j.engappai.2009.08.008.
[18] Crews J H, Mattson M G, Buckner G D. Multi-objective control optimization for semi-active vehicle suspensions[J]. Journal of Sound and Vibration, 2011, 330(23): 5502-5516. DOI:10.1016/j.jsv.2011.05.036.
[19] International Organization for Standardization. ISO 2631-1 Mechanical vibration and shock-evaluation of human exposure to whole body vibration—Part 1: General requirements [S]. Geneve, Switzerland: International Organization for Standardization, 1997.

Memo

Memo:
Biographies: Nguyen Van Liem(1986—), male, doctor; Zhang Jianrun(corresponding author), male, doctor, professor, zhangjr@seu.edu.cn.
Foundation item: The National Key Research and Development Plan(No. 2019YFB2006402).
Citation: Nguyen Van Liem, Zhang Jianrun, Wu Zhenpeng, et al. Performance analysis of semi-active cab’s hydraulic system of the vibratory roller using optimal fuzzy-PID control[J].Journal of Southeast University(English Edition), 2019, 35(4):399-407.DOI:10.3969/j.issn.1003-7985.2019.04.001.
Last Update: 2019-12-20