|Table of Contents|

[1] Bian Lishuang, Yin Jiuli, Tian Mengjiao, Fan Xinghua, et al. Exponential synchronization for delayed nonlinear Schrödingerequation and applications in optical secure communication [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 447-452. [doi:10.3969/j.issn.1003-7985.2019.04.007]

Exponential synchronization for delayed nonlinear Schrödingerequation and applications in optical secure communication()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2019 4
Research Field:
Mathematics, Physics, Mechanics
Publishing date:


Exponential synchronization for delayed nonlinear Schrödingerequation and applications in optical secure communication
Bian Lishuang1 Yin Jiuli2 Tian Mengjiao2 Fan Xinghua2
1School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
2Faculty of Science, Jiangsu University, Zhenjiang 212013, China
secure communication Melnikov method nonlinear Schrö dinger equation exponential synchronization
For further exploring the confidentiality of optical communication, exponential synchronization for the delayed nonlinear Schrödinger equation is studied. It is possible for time-delay systems to generate multiple positive Lyapunov exponents without the limitation of system dimension. Firstly, the homoclinic orbit analysis is carried out by using the bifurcation theory, and it is found that there are two homoclinic orbits in the system. According to the corresponding relationship, solitary waves also exist in the system. Secondly, the Melnikov method is used to prove that homoclinic orbits can evolve into chaos under arbitrary perturbations, and then chaotic signals are used as the carriers of information transmission. The Lyapunov exponent spectrum, phase diagram and time series of the system also prove the existence of chaos. Thirdly, an exponential synchronization controller is designed to achieve the chaotic synchronization between the driving system and the response system, and it is proved by the Lyapunov stability theory. Finally, the error system is simulated by using MATLAB, and it is found that the error tends to zero in a very short time. Numerical simulation results demonstrate that the proposed exponential synchronization scheme can effectively guarantee the chaotic synchronization within 1 s.


[1] Vaseghi B, Pourmina M A, Mobayen S. Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control [J].Nonlinear Dynamics, 2017, 89(3): 1689-1704. DOI: 10.1007/s11071-017-3543-9.
[2] Xiong L, Liu Z L, Zhang X G. Dynamical analysis, synchronization, circuit design, and secure communication of a novel hyperchaotic system[J]. Complexity, 2017, 2017: 1-23. DOI:10.1155/2017/4962739.
[3] Acho L. A chaotic secure communication system design based on iterative learning control theory[J].Applied Sciences, 2016, 6(10): 311. DOI:10.3390/app6100311.
[4] Kocamaz U E, Cicek S, Uyaroglu Y. Secure communication with chaos and electronic circuit design using passivity-based synchronization [J]. Journal of Circuits systems and Computers, 2018, 27(4):1850057. DOI: 10.1142/S0218126618500573.
[5] Mata-Machuca J L, Aguilar-Lopez R. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications [J]. European Physical Journal Plus, 2018, 133:14. DOI: 10.1140/epjp/i2018-11840-4.
[6] Durdu A, Uyaro(ˇoverg)lu Y. The shortest synchronization time with optimal fractional order value using a novel chaotic attractor based on secure communication[J]. Chaos, Solitons & Fractals, 2017, 104: 98-106. DOI:10.1016/j.chaos.2017.08.008.
[7] Smaoui N, Zribi M, Elmokadem T. A novel secure communication scheme based on the Karhunen-Loéve decomposition and the synchronization of hyperchaotic Lü systems[J]. Nonlinear Dynamics, 2017, 90(1): 271-285. DOI:10.1007/s11071-017-3660-5.
[8] Ding M Z, Ding E J, Ditto W L, et al. Control and synchronization of chaos in high dimensional systems: Review of some recent results[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1997, 7(4): 644-652. DOI:10.1063/1.166284.
[9] Oden J, Lavrov R, Chembo Y K, et al. Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(11): 114311. DOI:10.1063/1.5007867.
[10] Maheri M, Md Arifin N. Application adaptive exponential synchronization of chaotic dynamical systems in secure communications[J]. Advances in Difference Equations, 2017, 2017: 96. DOI:10.1186/s13662-017-1158-6.
[11] Abd M H, Tahir F R, Al-Suhail G A, et al. An adaptive observer synchronization using chaotic time-delay system for secure communication [J].Nonlinear Dynamics, 2017, 90(4): 2583-2598.
[12] Yin J L, Duan X C, Tian L X. Optical secure communication modeled by the perturbed nonlinear Schrödinger equation[J]. Optical and Quantum Electronics, 2017, 49(10): 317. DOI:10.1007/s11082-017-1111-7.
[13] Yin J L, Zhao L W, Tian L X. Melnikov’s criteria and chaos analysis in the nonlinear Schrödinger equation with Kerr law nonlinearity[J]. Abstract and Applied Analysis, 2014, 2014: 1-12. DOI:10.1155/2014/650781.
[14] Taghizadeh N, Mirzazadeh M, Mahmoodirad A. Application of Kudryashov method for high-order nonlinear Schrödinger equation[J]. Indian Journal of Physics, 2013, 87(8): 781-785. DOI:10.1007/s12648-013-0296-2.
[15] Gao H, Xu T Z, Wang G W. Optical solitons for the perturbed nonlinear Schrodinger equation with Kerr law and non-Kerr law nonlinearity[J]. Zeitschrift Fur Naturforschung Section A—A Journal of Physical Sciences, 2018, 73(4): 315-321.DOI: 10.1515/zna-2017-0400.
[16] Wan P, Sun D H, Chen D, et al. Exponential synchronization of inertial reaction-diffusion coupled neural networks with proportional delay via periodically intermittent control[J].Neurocomputing, 2019, 356: 195-205. DOI:10.1016/j.neucom.2019.05.028.


Biographies: Bian Lishuang(1993—), female, Ph.D. candidate; Yin Jiuli(corresponding author), male, doctor, professor, yjl@ujs.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 71673116, 71690242), the Humanistic and Social Science Foundation from Ministry of Education of China(No.16YJAZH007), the Natural Science Foundation of Jiangsu Province(No. SBK2015021674).
Citation: Bian Lishuang, Yin Jiuli, Tian Mengjiao, et al.Exponential synchronization for delayed nonlinear Schr?dinger equation and applications in optical secure communication[J].Journal of Southeast University(English Edition), 2019, 35(4):447-452.DOI:10.3969/j.issn.1003-7985.2019.04.007.
Last Update: 2019-12-20