|Table of Contents|

[1] Lu Guanya, Wang Kehai, Zhang Panpan, et al. Performance-based system seismic assessment for long-spansuspension bridges under two-level seismic hazard [J]. Journal of Southeast University (English Edition), 2019, 35 (4): 464-475. [doi:10.3969/j.issn.1003-7985.2019.04.009]
Copy

Performance-based system seismic assessment for long-spansuspension bridges under two-level seismic hazard()
两水准设防下大跨度悬索桥全桥系统 基于性能的抗震评价分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
35
Issue:
2019 4
Page:
464-475
Research Field:
Traffic and Transportation Engineering
Publishing date:
2019-12-30

Info

Title:
Performance-based system seismic assessment for long-spansuspension bridges under two-level seismic hazard
两水准设防下大跨度悬索桥全桥系统 基于性能的抗震评价分析
Author(s):
Lu Guanya1, Wang Kehai1, 2, Zhang Panpan2
1School of Transportation, Southeast University, Nanjing 210096, China
2Research Institute of Highway, Ministry of Transport, Beijing 100088, China
鲁冠亚1, 王克海1, 2, 张盼盼2
1东南大学交通学院, 南京 210096; 2交通运输部公路科学研究院, 北京 100088
Keywords:
suspension bridge fragility curve seismic hazard analysis repair cost ratio system seismic performance
悬索桥 易损性曲线 地震危险性分析 修复成本比 系统抗震性能
PACS:
U448
DOI:
10.3969/j.issn.1003-7985.2019.04.009
Abstract:
Since there are few studies on the performance-based seismic evaluation of the long-span suspension bridge system under two-level earthquake hazard in Chinese code, the developed procedure of this study can be regarded as a general program to assess the seismic performance of the overall system for long-span suspension bridges. In the procedure, the probabilistic seismic demand models of multiple bridge components were developed by nonlinear time-history analyses incorporating the related uncertainties, and the component-level fragility curves were calculated by the reasonable definition of limit states of the corresponding components in combination with seismic hazard analysis. The bridge repair cost ratios used to evaluate the system seismic performance were derived through the performance-based methodology and the damage probability of critical components. Furthermore, the repair cost ratios of the overall bridge system that was retrofitted with fluid viscous dampers for the main bridge and changed restraint systems for the approach bridges were compared. The results show that peak ground velocity and peak ground acceleration can be selected as the optimal intensity measurements of long-span suspension bridges using the TOPSIS(technique for order preference by similarity to an ideal solution). The bridge repair cost ratios can serve as accurate evaluation indicators to provide an efficient evaluation of retrofit measures. The seismic evaluation of long-span bridges is misled when ignoring the interaction of adjacent structures. However, the repair cost ratios of a bridge system that has optimum seismic performance are less sensitive to the relative importance of adjacent structures.
针对规范中关于两水准设防下大跨度悬索桥基于性能的抗震评价研究不充分的问题, 建立了可作为评估大跨度悬索桥全桥系统抗震性能的一般程序.首先采用考虑相关不确定性的非线性时程分析建立多个构件的概率地震需求模型, 合理定义构件极限状态.其次结合地震危险性分析计算构件级易损性曲线, 由关键构件的损伤概率和基于性能的方法推导出全桥系统的修复成本比, 评价两水准设防下系统的抗震性能.进一步比较了主桥采用阻尼器加固和改变引桥支承约束体系后全桥系统的修复成本比.结果表明:采用TOPSIS方法可选择PGV和PGA为大跨度悬索桥的最佳地震动强度指标.修复成本比可作为准确评价全桥系统抗震性能的指标, 对改造措施进行有效评估.忽略主引桥相互影响及其相对重要性会对桥梁系统的抗震性能评价产生偏差, 但在具有良好抗震性能的桥梁系统中, 修复成本比对结构相对重要性不敏感.

References:

[1] Nielson B G, DesRoches R. Seismic fragility methodology for highway bridges using a component level approach[J].Earthquake Engineering & Structural Dynamics, 2007, 36(6): 823-839. DOI:10.1002/eqe.655.
[2]Ramanathan K N. Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design[D]. Atlanta, USA: Georgia Institute of Technology, 2012.
[3] Zhang J, Huo Y L. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J].Engineering Structures, 2009, 31(8): 1648-1660. DOI:10.1016/j.engstruct.2009.02.017.
[4] Padgett J E, DesRoches R. Methodology for the development of analytical fragility curves for retrofitted bridges[J].Earthquake Engineering & Structural Dynamics, 2008, 37(8): 1157-1174. DOI:10.1002/eqe.801.
[5] Zhong J, Pang Y T, Jeon J S, et al. Seismic fragility assessment of long-span cable-stayed bridges in China[J].Advances in Structural Engineering, 2016, 19(11): 1797-1812. DOI:10.1177/1369433216649380.
[6] Sgambi L, Garavaglia E, Basso N, et al. Monte Carlo simulation for seismic analysis of a long span suspension bridge[J].Engineering Structures, 2014, 78: 100-111. DOI:10.1016/j.engstruct.2014.08.051.
[7] Nie L Y, Li J Z, Hu S D, et al. Comparison of three kinds of girder end constraint systems for Xihoumen bridge[J]. Bridge Construction, 2006, 36(6): 73-75, 78.(in Chinese)
[8] Arzoumanidis S, Shama A, Ostadan F. Performance-based seismic analysis and design of suspension bridges[J].Earthquake Engineering & Structural Dynamics, 2005, 34(4/5): 349-367. DOI:10.1002/eqe.441.
[9] Karmakar D, Ray-Chaudhuri S, Shinozuka M. Finite element model development, validation and probabilistic seismic performance evaluation of Vincent Thomas suspension bridge[J].Structure and Infrastructure Engineering, 2015, 11(2): 223-237. DOI:10.1080/15732479.2013.863360.
[10] Ministry of Transport of the People’s Republic of China. JTG/T B02-1—2008 Guidelines for seismic design of highway bridges[S]. Beijing: China Communication Publishing, 2008.(in Chinese)
[11] Chen W F, Duan L. Bridge engineering handbook[M]. Boca Raton, USA: CRC Press, 2014: 382-384.
[12] McKenna F, Scott M H, Fenves G L. Nonlinear finite-element analysis software architecture using object composition[J].Journal of Computing in Civil Engineering, 2010, 24(1): 95-107. DOI:10.1061/(asce)cp.1943-5487.0000002.
[13] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering, 1988, 114(8): 1804-1826. DOI:10.1061/(asce)0733-9445(1988)114:8(1804).
[14] Nazmy A S, Abdel-Ghaffar A M. Non-linear earthquake-response analysis of long-span cable-stayed bridges: Theory[J]. Earthquake Engineering & Structural Dynamics. 1990, 19(1), 45-62. DOI:10.1002/eqe.4290190106.
[15] Wang K H, Lu G Y, Zhang P P. Study on seismic design evaluation methods for highway medium-span and small-span girder bridges based on machine learning [J]. Journal of Highway and Transportation Research and Development, 2019, 36(2): 74-84.(in Chinese)
[16] Shamsabadi A, Rollins K M, Kapuskar M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720. DOI:10.1061/(asce)1090-0241(2007)133:6(707).
[17] California Department of Transportation. Caltrans seismic design criteria [S]. Sacramento, CA, USA: California Department of Transportation, 1999.
[18] Muthukumar S, Desroches R. Evaluation of impact models for seismic pounding[C]// 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada, 2004: No. 235.
[19] Li X L, Sun Z G, Wang D S, et al. Longitudinal seismic pounding effect of bridges abutment and backfilling damage[J]. Journal of Chang’an University(Natural Science Edition), 2015, 35(4): 76-82.(in Chinese)
[20] Madani B, Behnamfar F, Tajmir Riahi H. Dynamic response of structures subjected to pounding and structure-soil-structure interaction[J].Soil Dynamics and Earthquake Engineering, 2015, 78: 46-60. DOI:10.1016/j.soildyn.2015.07.002.
[21] Wu G, Wang K H, Lu G Y, et al. An experimental investigation of unbonded laminated elastomeric bearings and the seismic evaluations of highway bridges with tested bearing components[J].Shock and Vibration, 2018, 2018: 1-18. DOI:10.1155/2018/8439321.
[22] Xu L Q, Li J Z. Design and experimental investigation of a new type sliding retainer and its efficacy in seismic fortification[J]. Engineering Mechanics. 2016, 33(2): 111-118.(in Chinese)
[23] Krawinkler H, Medina R, Alavi B. Seismic drift and ductility demands and their dependence on ground motions[J].Engineering Structures, 2003, 25(5): 637-653. DOI:10.1016/s0141-0296(02)00174-8.
[24] Gupta A, Krawinkler H. Behavior of ductile SMRFs at various seismic hazard levels[J].Journal of Structural Engineering, 2000, 126(1): 98-107. DOI:10.1061/(asce)0733-9445(2000)126:1(98).
[25] Opricovic S, Tzeng G H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS[J].European Journal of Operational Research, 2004, 156(2): 445-455. DOI:10.1016/s0377-2217(03)00020-1.
[26] Cornell C A. Calculating building seismic performance reliability: A basis for multi-level design norms[C]// Proceedings of the 11th World Conference on Earthquake Engineering. Acapulco, Mexico, 1996: No. 2122.
[27] Xie Y Z, Zhang J. Optimal design of seismic protective devices for highway bridges using performance-based methodology and multiobjective genetic optimization[J].Journal of Bridge Engineering, 2017, 22(3): 04016129. DOI:10.1061/(asce)be.1943-5592.0001009.
[28] Federal Emergency Management Agency. Multi-hazard loss estimation methodology, earthquake model, HAZUS MH MR4—technical manual [M]. Washington, DC, USA: FEMA Mitigation Div., 2003.

Memo

Memo:
Biographies: Lu Guanya(1990—), male, Ph.D. candidate; Wang Kehai(corresponding author), male, doctor, professor, kh.wang@rioh.cn.
Foundation item: Basic Scientific Research Service Project of Central-level Public Welfare Research Institute(No.2016-9018).
Citation: Lu Guanya, Wang Kehai, Zhang Panpan.Performance-based system seismic assessment for long-span suspension bridges under two-level seismic hazard[J].Journal of Southeast University(English Edition), 2019, 35(4):464-475.DOI:10.3969/j.issn.1003-7985.2019.04.009.
Last Update: 2019-12-20