|Table of Contents|

[1] Sheng Xingping, Chen Jianlong,. An explicit representation and computation for the outer inverse [J]. Journal of Southeast University (English Edition), 2020, 36 (1): 118-122. [doi:10.3969/j.issn.1003-7985.2020.01.015]

An explicit representation and computation for the outer inverse()

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

2020 1
Research Field:
Mathematics, Physics, Mechanics
Publishing date:


An explicit representation and computation for the outer inverse
Sheng Xingping1 2 Chen Jianlong1
1School of Mathematics, Southeast University, Nanjing 211189, China
2School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, China
outer inverse explicit representation elementary operation computational complexity
First, an explicit representation A(2)T, S=(GA+E)-1G of the outer invers A(2)T, S for a matrix A∈Cm×n with the prescribed range T and null space S is derived, which is simpler than A(2)T, S=(GA+E)-1G-V(UV)-2UG proposed by Ji in 2005. Next, a new algorithm for computing the outer inverse A(2)T, S based on the improved representation A(2)T, S=(GA+E)-1G through elementary operations on an appropriate partitioned matrix [GA InIn 0] is proposed and investigated. Then, the computational complexity of the introduced algorithm is also analyzed in detail. Finally, two numerical examples are shown to illustrate that this method is correct.


[1] Ben-Israel A, Greville T N E, Generalized inverse: Theory and applications [M]. 2nd eds. New York: Springer Verlag, 2003.
[2] Nashed M Z, Generalized inverse and applications [M]. New York: Academic Press, 1976.
[3] Wedin P A. Report UMINF 124.85, S-901 87 Perturbation results and condition number for outer inverses and especially for projections [R]. Umea, Sweden: Institution of Information Proceedings University of Umea, 1985.
[4] Nashed M Z, Chen X. Convergence of Newton-like methods for singular operator equations using outer inverses [J]. Numerische Mathematik, 1993, 66(1): 235-257. DOI:10.1007/bf01385696.
[5] Getson A J, Hsuan F G.{2} -inverse and their statistical applications [M]//Lecture Notes in Statistics 47. Berlin: Springer, 1988.
[6] Hsuan F, Langenberg P, Getson A. The {2} -inverse with applications to statistics [J]. Linear Algebra and Its Applications, 1985, 70: 241-248.DOI:10.1016/0024-3795(85)90055-2.
[7] Cai J, Chen G L. On determinantal representation for the generalized inverse A(2)T, S and its applications [J]. Numerical Linear Algebra with Applications, 2007, 14(3):169-182.DOI:10.1002/nla.513.
[8] Sheng X P, Chen G L. Several representations of generalized inverse A(2)T, S and their application [J]. International Journal of Computer Mathematics, 2008, 85(9): 1441-1453.DOI:10.1080/00207160701532767.
[9] Sheng X P, Chen G L. New proofs of two representations and minor of generalized inverse A(2)T, S[J]. Applied Mathematics and Computation, 2011, 217(13): 6309-6314.DOI:10.1016/j.amc.2011.01.003.
[10] Yu Y M, Wei Y M. Determinantal representation of the generalized inverse A(2)T, S over integral domains and its applications [J]. Linear and Multilinear Algebra, 2009, 57(6): 547-559.DOI:10.1080/03081080701871665.
[11] Chen Y L, Chen X Z. Representation and approximation of the outer inverse A(2)T, S of a matrix A[J]. Linear Algebra and Its Applications, 2000, 308(1/2/3): 85-107.DOI:10.1016/S0024-3795(99)00269-4.
[12] Djordjevic D, Stanimirovic P, Wei Y M. The representation and approximations of outer generalized inverses [J]. Acta Mathematica Hungarica, 2004, 104(1/2): 1-26. DOI:10.1023/b:amhu.0000034359.98588.7b.
[13] Zheng B, Wang G R. Representation and approximation for generalized inverse A(2)T, S [J]. Journal of Applied Mathematics and Computing, 2006, 22(3):225-240.DOI:10.1007/bf02832049.
[14] Wei Y M, Wu H B.(T, S)splitting methods for computing the generalized inverse A(2)T, S and rectangular systems [J].International Journal of Computer Mathematics, 2001, 77(3):401-424.DOI:10.1080/00207160108805075.
[15] Wei Y M, Wu H B. The representation and approximation for the generalized inverse A(2)T, S [J]. Applied Mathematics and Computation, 2003, 135(2/3):263-276.DOI:10.1016/S0096-3003(01)00327-7.
[16] Wei Y M. A characterization and representation of the generalized inverse A(2)T, S and its application [J]. Linear Algebra and Its Applications, 1998, 280(2/3): 87-96.DOI:10.1016/s0024-3795(98)00008-1.
[17] Ji J. Explicit expressions of generalized inverses and condensed Cramer rules [ J]. Linear Algebra and Its Applications, 2005, 404: 183-192. DOI:10.1016/j.laa.2005.02.025.
[18] Stanimirovi P S, Pappas D, Katsikis V N, et al. Full rank representations of outer inverse based on the QR decomposition [J]. Applied Mathematics and Computation, 2012, 218(20):10321-10333.DOI:10.1016/j.amc.2012.04.011.
[19] Ji J. Computing the outer and group inverses through elementary row operations[J]. Computers and Mathematics with Applications, 2014, 68(6):655-663. DOI:10.1016/j.camwa.2014.07.016.
[20] Sheng X P, Chen G L. Innovation based on Gaussian elimination to compute generalized inverse A(2)T, S [J]. Computers and Mathematics with Applications, 2013, 65(11):1823-1829.DOI:10.1016/j.camwa.2013.03.011.
[21] Stanimirovic P S, Petkovic M D. Gauss-Jordan elimination method for computing outer inverses [J]. Applied Mathematics and Computation, 2013, 219(9): 4667-4679.DOI:10.1016/j.amc.2012.10.081.


Biographies: Sheng Xingping(1976—), male, professor, doctor; Chen Jianlong(corresponding author), male, doctor, professor, jlchen@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No.11771076).
Citation: Sheng Xingping, Chen Jianlong. An explicit representation and computation for the outer inverse[J].Journal of Southeast University(English Edition), 2020, 36(1):118-122.DOI:10.3969/j.issn.1003-7985.2020.01.015.
Last Update: 2020-03-20