[1] Ben-Israel A, Greville T N E, Generalized inverse: Theory and applications [M]. 2nd eds. New York: Springer Verlag, 2003.
[2] Nashed M Z, Generalized inverse and applications [M]. New York: Academic Press, 1976.
[3] Wedin P A. Report UMINF 124.85, S-901 87 Perturbation results and condition number for outer inverses and especially for projections [R]. Umea, Sweden: Institution of Information Proceedings University of Umea, 1985.
[4] Nashed M Z, Chen X. Convergence of Newton-like methods for singular operator equations using outer inverses [J]. Numerische Mathematik, 1993, 66(1): 235-257. DOI:10.1007/bf01385696.
[5] Getson A J, Hsuan F G.{2} -inverse and their statistical applications [M]//Lecture Notes in Statistics 47. Berlin: Springer, 1988.
[6] Hsuan F, Langenberg P, Getson A. The {2} -inverse with applications to statistics [J]. Linear Algebra and Its Applications, 1985, 70: 241-248.DOI:10.1016/0024-3795(85)90055-2.
[7] Cai J, Chen G L. On determinantal representation for the generalized inverse A^{(2)}_{T, S} and its applications [J]. Numerical Linear Algebra with Applications, 2007, 14(3):169-182.DOI:10.1002/nla.513.
[8] Sheng X P, Chen G L. Several representations of generalized inverse A^{(2)}_{T, S} and their application [J]. International Journal of Computer Mathematics, 2008, 85(9): 1441-1453.DOI:10.1080/00207160701532767.
[9] Sheng X P, Chen G L. New proofs of two representations and minor of generalized inverse A^{(2)}_{T, S}[J]. Applied Mathematics and Computation, 2011, 217(13): 6309-6314.DOI:10.1016/j.amc.2011.01.003.
[10] Yu Y M, Wei Y M. Determinantal representation of the generalized inverse A^{(2)}_{T, S} over integral domains and its applications [J]. Linear and Multilinear Algebra, 2009, 57(6): 547-559.DOI:10.1080/03081080701871665.
[11] Chen Y L, Chen X Z. Representation and approximation of the outer inverse A^{(2)}_{T, S} of a matrix A[J]. Linear Algebra and Its Applications, 2000, 308(1/2/3): 85-107.DOI:10.1016/S0024-3795(99)00269-4.
[12] Djordjevic D, Stanimirovic P, Wei Y M. The representation and approximations of outer generalized inverses [J]. Acta Mathematica Hungarica, 2004, 104(1/2): 1-26. DOI:10.1023/b:amhu.0000034359.98588.7b.
[13] Zheng B, Wang G R. Representation and approximation for generalized inverse A^{(2)}_{T, S} [J]. Journal of Applied Mathematics and Computing, 2006, 22(3):225-240.DOI:10.1007/bf02832049.
[14] Wei Y M, Wu H B.(T, S)splitting methods for computing the generalized inverse A^{(2)}_{T, S} and rectangular systems [J].International Journal of Computer Mathematics, 2001, 77(3):401-424.DOI:10.1080/00207160108805075.
[15] Wei Y M, Wu H B. The representation and approximation for the generalized inverse A^{(2)}_{T, S} [J]. Applied Mathematics and Computation, 2003, 135(2/3):263-276.DOI:10.1016/S0096-3003(01)00327-7.
[16] Wei Y M. A characterization and representation of the generalized inverse A^{(2)}_{T, S} and its application [J]. Linear Algebra and Its Applications, 1998, 280(2/3): 87-96.DOI:10.1016/s0024-3795(98)00008-1.
[17] Ji J. Explicit expressions of generalized inverses and condensed Cramer rules [ J]. Linear Algebra and Its Applications, 2005, 404: 183-192. DOI:10.1016/j.laa.2005.02.025.
[18] Stanimirovi P S, Pappas D, Katsikis V N, et al. Full rank representations of outer inverse based on the QR decomposition [J]. Applied Mathematics and Computation, 2012, 218(20):10321-10333.DOI:10.1016/j.amc.2012.04.011.
[19] Ji J. Computing the outer and group inverses through elementary row operations[J]. Computers and Mathematics with Applications, 2014, 68(6):655-663. DOI:10.1016/j.camwa.2014.07.016.
[20] Sheng X P, Chen G L. Innovation based on Gaussian elimination to compute generalized inverse A^{(2)}_{T, S} [J]. Computers and Mathematics with Applications, 2013, 65(11):1823-1829.DOI:10.1016/j.camwa.2013.03.011.
[21] Stanimirovic P S, Petkovic M D. Gauss-Jordan elimination method for computing outer inverses [J]. Applied Mathematics and Computation, 2013, 219(9): 4667-4679.DOI:10.1016/j.amc.2012.10.081.