|Table of Contents|

[1] Wei Zezhong, Jin Chuanling, Jin Hui, et al. Fatigue life evaluation of girth butt weld within welded caststeel joints based on the extrapolation notch stress method [J]. Journal of Southeast University (English Edition), 2021, (1): 59-66. [doi:10.3969/j.issn.1003-7985.2021.01.008]
Copy

Fatigue life evaluation of girth butt weld within welded caststeel joints based on the extrapolation notch stress method()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2021年第1期
Page:
59-66
Research Field:
Materials Sciences and Engineering
Publishing date:
2021-03-20

Info

Title:
Fatigue life evaluation of girth butt weld within welded caststeel joints based on the extrapolation notch stress method
Author(s):
Wei Zezhong1 2 Jin Chuanling3 1 Jin Hui1 2
1Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China
2School of Civil Engineering, Southeast University, Nanjing 211189, China
3Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China
Keywords:
welded cast steel joint girth butt weld extrapolation notch stress method effective notch stress method fatigue life evaluation
PACS:
TU512.9
DOI:
10.3969/j.issn.1003-7985.2021.01.008
Abstract:
The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method. Firstly, the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size. Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root, the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method, in which the key problem is to calculate the extrapolation point C, and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint. By setting different values of geometric parameters, the corresponding value of parameter C is calculated, and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis. Meanwhile, the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding). The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.

References:

[1] Haldimann-Sturm S C, Nussbaumer A. Fatigue design of cast steel nodes in tubular bridge structures[J]. International Journal of Fatigue, 2008, 30(3): 528-537. DOI: 10.1016/j.ijfatigue.2007.03.007.
[2] Zhao X L, Tong L W. New development in steel tubular joints[J].Advances in Structural Engineering, 2011, 14(4): 699-715. DOI:10.1260/1369-4332.14.4.699.
[3] Jin H, Mo J H, Sun S J, et al. Experimental study on medium and low cycle fatigue properties of cast steel GS20Mn5V[J]. Journal of Shanghai Jiaotong University(Science), 2020: 1-9. DOI:10.1007/s12204-020-2237-5.
[4] Xia J, Jin H. Analysis of residual stresses and variation mechanism in dissimilar girth welded joints between tubular structures and steel castings[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 104-113. DOI:10.1016/j.ijpvp.2018.06.003.
[5] Yan H D, Jin H. Damage evolution analysis of cast steel GS-20Mn5V based on modified GTN model[J]. Journal of Southeast University(English Edition), 2018, 34(3): 364-370. DOI: 10.3969/j.issn.1003-7985.2018.03.012.
[6] Wei Z Z, Jin H, Pei X J, et al. A simplified approach to estimate the fatigue life of full-scale welded cast steel thin-walled tubular structures[J].Thin-Walled Structures, 2021, 160: 107348. DOI:10.1016/j.tws.2020.107348.
[7] Wei Z Z, Jin H, Chen G L. Traction structural stress analysis of fatigue behaviors of girth butt weld within welded cast steel joints[J].International Journal of Pressure Vessels and Piping, 2020, 179: 104027. DOI:10.1016/j.ijpvp.2019.104027.
[8] Cai J G, Feng J, Gu H B, et al. Practical application and analysis of complex cast-steel joint[J]. Steel Construction, 2008, 23(4): 13-17.(in Chinese)
[9] Wang L, Jin H, Dong H, et al. Balance fatigue design of cast steel nodes in tubular steel structures[J].The Scientific World Journal, 2013, 2013: 421410. DOI:10.1155/2013/421410.
[10] Ding J M, Li B N, Chen J, et al. Design and application of large-scale cast-steel joints for special-shape bridges[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2172(1): 66-73. DOI:10.3141/2172-08.
[11] Du W F, Sun Y, Yang M J. Bearing capacity of the cast-steel joint with branches under eccentric load[J]. Journal of Constructional Steel Research, 2017, 135: 285-291. DOI:10.1016/j.jcsr.2017.04.005.
[12] Veselcic M, Herion S, Puthli R. Selection of butt-welded connections for joints between tubulars and cast steel nodes under fatigue loading[M]//Tubular Structures Ⅺ. New York: Routledge, 2017: 585-592. DOI:10.1201/9780203734964-72.
[13] Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J].International Journal of Fatigue, 2001, 23(10): 865-876. DOI:10.1016/S0142-1123(01)00055-X.
[14] Dong P, Pei X, Xing S, et al. A structural strain method for low-cycle fatigue evaluation of welded components[J].International Journal of Pressure Vessels and Piping, 2014, 119: 39-51. DOI:10.1016/j.ijpvp.2014.03.003.
[15] Pei X J, Dong P S. An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects[J].Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(1): 239-255. DOI:10.1111/ffe.12900.
[16] Pei X J, Dong P S, Xing S Z. A structural strain parameter for a unified treatment of fatigue behaviors of welded components[J].International Journal of Fatigue, 2019, 124: 444-460. DOI:10.1016/j.ijfatigue.2019.03.010.
[17] Wang P, Pei X J, Dong P S, et al. Analysis of weld root fatigue cracking in load-carrying high-strength aluminum alloy cruciform joints[J].International Journal of Fatigue, 2020, 139: 105735. DOI:10.1016/j.ijfatigue.2020.105735.
[18] Pei X J, Dong P S, Mei J F. The effects of kinematic hardening on thermal ratcheting and Bree diagram boundaries[J]. Thin-Walled Structures, 2021, 159: 107235. DOI:10.1016/j.tws.2020.107235.
[19] Pei X J, Dong P S. A universal approach to ratcheting problems of bree type incorporating arbitrary loading and material nonlinearity conditions[J]. International Journal of Pressure Vessels and Piping, 2020, 185: 104137. DOI:10.1016/j.ijpvp.2020.104137.
[20] Han Q, Guo Q, Yin Y, et al. Fatigue performance of butt welds between cast steel joint and steel tubular members[J].Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(4): 642-651. DOI:10.1111/ffe.12513.
[21] Jin H, Li J, Mo J H, et al. Fatigue of girth butt weld for cast steel node connection in tower structure under wave loadings[J]. The Structural Design of Tall and Special Buildings, 2014, 23(15): 1119-1140. DOI:10.1002/tal.1111.
[22] Sonsino C M, Fricke W, de Bruyne F, et al. Notch stress concepts for the fatigue assessment of welded joints-background and applications[J]. International Journal of Fatigue, 2012, 34(1): 2-16. DOI:10.1016/j.ijfatigue.2010.04.011.
[23] Poutiainen I, Tanskanen P, Marquis G. Finite element methods for structural hot spot stress determination—a comparison of procedures[J]. International Journal of Fatigue, 2004, 26(11): 1147-1157. DOI:10.1016/j.ijfatigue.2004.04.003.
[24] Pradana M R, Qian X, Swaddiwudhipong S. An extrapolation method to determine the effective notch stress in welded joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(9): 1118-1135. DOI:10.1111/ffe.12307.
[25] Fricke W, Kahl A. Comparison of different structural stress approaches for fatigue assessment of welded ship structures[J]. Marine Structures, 2005, 18(7/8): 473-488. DOI:10.1016/j.marstruc.2006.02.001.
[26] Pradana M R, Qian X, Swaddiwudhipong S, et al. An extrapolation method to determine the effective notch stress in circular hollow section X-joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(2): 160-175. DOI:10.1111/ffe.12476.
[27] Pradana M R, Qian X D, Swaddiwudhipong S. Simplified effective notch stress calculation for non-overlapping circular hollow section K-joints[J]. Marine Structures, 2017, 55: 1-16. DOI:10.1016/j.marstruc.2017.04.006.
[28] Fricke W. Guideline for the fatigue assessment by notch stress analysis for welded structures[R]. Genoa, Italy: International Institute of Welding, 2008.

Memo

Memo:
Biographies: Wei Zezhong(1990—), male, Ph.D. candidate; Jin Hui(corresponding author), female, doctor, professor, jinhui@seu.edu.cn.
Foundation items: The National Key Research and Development Program of China(No. 2017YFC0805100), the National Natural Science Foundation of China(No. 51578137), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
Citation: Wei Zezhong, Jin Chuanling, Jin Hui. Fatigue life evaluation of girth butt weld within welded cast steel joints based on the extrapolation notch stress method[J].Journal of Southeast University(English Edition), 2021, 37(1):59-66.DOI:10.3969/j.issn.1003-7985.2021.01.008.
Last Update: 2021-03-20