|Table of Contents|

[1] Chen Jing, Zhang Yong, Liu Lei,. Vulnerability analysis of multimodal transport networksbased on complex network theory [J]. Journal of Southeast University (English Edition), 2021, (2): 209-215. [doi:10.3969/j.issn.1003-7985.2021.02.011]
Copy

Vulnerability analysis of multimodal transport networksbased on complex network theory()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
Issue:
2021年第2期
Page:
209-215
Research Field:
Traffic and Transportation Engineering
Publishing date:
2021-06-20

Info

Title:
Vulnerability analysis of multimodal transport networksbased on complex network theory
Author(s):
Chen Jing Zhang Yong Liu Lei
School of Transportation, Southeast University, Nanjing 211189, China
Keywords:
multimodal transport topology structure vulnerability complex network
PACS:
U15
DOI:
10.3969/j.issn.1003-7985.2021.02.011
Abstract:
To explore the structural characteristics and vulnerability of multimodal transport networks, this study identifies the structural characteristics of a multimodal transport network on the basis of the complex network theory. Key nodes are clarified from the analysis of the structural characteristics. The characteristic path length and percentage of the largest subgraph are applied to analyze the vulnerability of the multimodal transport network after random and intentional attacks on the nodes. The network of a multimodal transport company is taken as an example in the empirical analysis. Results show that with more than ten nodes under a random attack, the percentage of the largest subgraph is less than 20%, and the characteristic path length is less than 2. The same performance is observed for more than seven nodes under an intentional attack. The multimodal transport network is more vulnerable under an international attack against key nodes. The results of the topology and node failure under random or intentional attacks would support the management of the multimodal transport network. Suggestions for the emergency transportation organization of enterprises under attacks are proposed accordingly. These suggestions should help improve network invulnerability and recovery from node failure.

References:

[1] Zhang D, He R, Li S, et al. A multimodal logistics service network design with time windows and environmental concerns[J].PLoS One, 2017, 12(9): e0185001. DOI:10.1371/journal.pone.0185001.
[2] Tsao Y C, Linh V T. Seaport-dry port network design considering multimodal transport and carbon emissions[J]. Journal of Cleaner Production, 2018, 199: 481-492. DOI:10.1016/j.jclepro.2018.07.137.
[3] Jiang J H, Zhang D Z, Meng Q, et al. Regional multimodal logistics network design considering demand uncertainty and CO2 emission reduction target: A system-optimization approach[J]. Journal of Cleaner Production, 2020, 248: 119304. DOI:10.1016/j.jclepro.2019.119304.
[4] Resat H G, Turkay M. A bi-objective model for design and analysis of sustainable intermodal transportation systems: A case study of Turkey[J]. International Journal of Production Research, 2019, 57(19): 6146-6161. DOI:10.1080/00207543.2019.1587187.
[5] Fazayeli S, Eydi A, Kamalabadi I N. Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm[J]. Computers & Industrial Engineering, 2018, 119: 233-246. DOI:10.1016/j.cie.2018.03.041.
[6] Wang Q Z, Chen J M, Tseng M L, et al.Modelling green multimodal transport route performance with witness simulation software[J]. Journal of Cleaner Production, 2020, 248: 119245. DOI:10.1016/j.jclepro.2019.119245.
[7] Li J, Yang B, Zhu X L. Path optimization of green multimodal transportation under mixed uncertainties[J].Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 13-19, 27. DOI:10.16097/j.cnki.1009-6744.2019.04.003. (in Chinese)
[8] Zhao Y R, Yang Z Z, Haralambides H. Optimizing the transport of export containers along China’s coronary artery: The Yangtze River[J]. Journal of Transport Geography, 2019, 77: 11-25. DOI:10.1016/j.jtrangeo.2019.04.005.
[9] Saeedi H, Wiegmans B, Behdani B, et al. European intermodal freight transport network: Market structure analysis[J]. Journal of Transport Geography, 2017, 60: 141-154. DOI:10.1016/j.jtrangeo.2017.03.002.
[10] Sitek P, Wikarek J. Cost optimization of supply chain with multimodal transport[C]//2012 Federated Conference on Computer Science and Information Systems(FedCSIS). Wroclaw, Poland, 2012: 1111-1118.
[11] Saeedi H, Behdani B, Wiegmans B, et al. Assessing the technical efficiency of intermodal freight transport chains using a modified network DEA approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 126: 66-86. DOI:10.1016/j.tre.2019.04.003.
[12] Wang Z Y, Hill D J, Chen G, et al. Power system cascading risk assessment based on complex network theory[J].Physica A: Statistical Mechanics and Its Applications, 2017, 482: 532-543. DOI:10.1016/j.physa.2017.04.031.
[13] Wang S G, Zheng L L, Yu D X. The improved degree of urban road traffic network: A case study of Xiamen, China[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 469: 256-264. DOI:10.1016/j.physa.2016.11.090.
[14] Porta S, Crucitti P, Latora V. The network analysis of urban streets: A dual approach[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 369(2): 853-866. DOI:10.1016/j.physa.2005.12.063.
[15] Bellingeri M, Bevacqua D, Scotognella F, et al. Efficacy of local attack strategies on the Beijing road complex weighted network[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 510: 316-328. DOI:10.1016/j.physa.2018.06.127.
[16] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102. DOI:10.1103/physreve.66.065102.
[17] Wang Y C, Xiao R B. An ant colony based resilience approach to cascading failures in cluster supply network[J].Physica A: Statistical Mechanics and Its Applications, 2016, 462: 150-166. DOI:10.1016/j.physa.2016.06.058.
[18] Crucitti P, Latora V, Porta S. Centrality measures in spatial networks of urban streets[J]. Physical Review E, 2006, 73(3): 036125. DOI:10.1103/physreve.73.036125.
[19] Babaei M, Ghassemieh H, Jalili M. Cascading failure tolerance of modular small-world networks[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2011, 58(8): 527-531. DOI:10.1109/TCSII.2011.2158718.
[20] Lü C C, Si S B, Duan D L, et al. Dynamical robustness of networks against multi-node attacked[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 471: 837-844. DOI:10.1016/j.physa.2016.12.066.
[21] Wang S, Liu J. Designing comprehensively robust networks against intentional attacks and cascading failures[J].Information Sciences, 2019, 478: 125-140. DOI:10.1016/j.ins.2018.11.005.
[22] Wang Q Z, Chen J M, Tseng M L, et al.Modelling green multimodal transport route performance with witness simulation software[J]. Journal of Cleaner Production, 2020, 248: 119245. DOI:10.1016/j.jclepro.2019.119245.

Memo

Memo:
Biographies: Chen Jing(1990—), female, Ph.D. candidate; Zhang Yong(corresponding author), male, doctor, professor, zhangyong@seu.edu.cn.
Foundation item: The Science and Technology Demonstration Project of Multimodal Freight Transport in Jiangsu Province(No.2018Y02).
Citation: Chen Jing, Zhang Yong, Liu Lei. Vulnerability analysis of multimodal transport networks based on complex network theory[J].Journal of Southeast University(English Edition), 2021, 37(2):209-215.DOI:10.3969/j.issn.1003-7985.2021.02.011.
Last Update: 2021-06-20