)[1]BATTU R S, AGATHOS K, LONDOÑO MONSALVE J M, et al. Combining transfer learning and numerical modelling to deal with the lack of training data in data-based SHM[J]. Journal of Sound and Vibration, 2025, 595: 118710.
[2]DUAN Y F, DUAN Z T, ZHANG H M, et al. Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees[J]. Journal of Southeast University (English Edition), 2024, 40(3): 221-229.
[3]YUAN Z J, WANG H, MAO J X, et al. Influence study of main cable displacement-controlled device type of long-span suspension bridges on structural mechanical properties[J]. Journal of Southeast University (English Edition), 2025, 41(1): 27-36.
[4]SHAN J Z, ZHANG X, LOONG C N, et al. Predictive maintenance and its applications in civil engineering structures: A review[J]. Journal of Southeast University (English Edition), 2024, 40(3): 245-256.
[5]ZHOU G D, YI T H, XIE M X, et al. Optimal wireless sensor placement in structural health monitoring emphasizing information effectiveness and network performance[J]. Journal of Aerospace Engineering, 2021, 34(2): 04020112.
[6]YI T H, LI H N. Methodology developments in sensor placement for health monitoring of civil infrastructures[J]. International Journal of Distributed Sensor Networks, 2012, 8(8): 612726.
[7]OSTACHOWICZ W, SOMAN R, MALINOWSKI P. Optimization of sensor placement for structural health monitoring: A review[J]. Structural Health Monitoring, 2019, 18(3): 963-988.
[8]TAN Y, ZHANG L M. Computational methodologies for optimal sensor placement in structural health monitoring: A review[J]. Structural Health Monitoring, 2020, 19(4): 1287-1308.
[9]MUSTAPHA S, LU Y, NG C T, et al. Sensor networks for structures health monitoring: Placement, implementations, and challenges: A review[J]. Vibration, 2021, 4(3): 551-585.
[10]HASSANI S, DACKERMANN U. A systematic review of optimization algorithms for structural health monitoring and optimal sensor placement[J]. Sensors, 2023, 23(6): 3293.
[11]PAPADIMITRIOU C. Optimal sensor placement methodology for parametric identification of structural systems[J]. Journal of Sound and Vibration, 2004, 278(4/5): 923-947.
[12]LIU F Q, ZHANG L M. Successive method for optimal placement of actuators and sensors[J]. Journal of Astronautics, 2000, 21(3): 64-69. (in Chinese)
[13]YAO L, SETHARES W A, KAMMER D C. Sensor placement for on-orbit modal identification via a genetic algorithm[J]. AIAA Journal, 1993, 31(10): 1922-1928.
[14]RAO A R M, ANANDAKUMAR G. Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique[J]. Smart Material Structures, 2007, 16(6): 2658-2672.
[15]YI T H, LI H N, ZHANG X D. A modified monkey algorithm for optimal sensor placement in structural health monitoring[J]. Smart Materials and Structures, 2012, 21(10): 105033.
[16]ZHOU G D, YI T H, LI H N. Sensor placement optimization in structural health monitoring using cluster-in-cluster firefly algorithm[J]. Advances in Structural Engineering, 2014, 17(8): 1103-1115.
[17]ZHOU G D, YI T H, ZHANG H, et al. Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm[J]. Smart Structures and Systems, 2015, 16(2): 243-262.
[18]YI T H, ZHOU G D, LI H N, et al. Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm[J]. Structural Control and Health Monitoring, 2017, 24(8): e1958.
[19]CHEN H, YIKAI ZHU Y K, LEI B, et al. Sensor fault self-detection based on the mean shift method[J]. Journal of Southeast University (English Edition), 2024, 40(2): 140-147.
[20]LI L L, LIU G, ZHANG L L, et al. Sensor fault detection with generalized likelihood ratio and correlation coefficient for bridge SHM[J]. Journal of Sound and Vibration, 2019, 442: 445-458.
[21]MA S L, JIANG S F, LI J. Structural damage detection considering sensor performance degradation and measurement noise effect[J]. Measurement, 2019, 131: 431-442.
[22]HUYNH T C, NGUYEN T D, HO D D, et al. Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique[J]. Sensors, 2020, 20(2): 510.
[23]THOMAS G C, CLARK R D. A modal test design strategy for modal correlation[C]//Proceedings of the 13th International Modal Analysis Conference. Schenectady, NY, USA, 1995: 927-933.
[24]YANG X S. Nature-inspired metaheuristic algorithms[M]. Frome, UK: Luniver Press, 2010.
[25]TALATAHARI S, GANDOMI A H, YUN G J. Optimum design of tower structures using firefly algorithm[J]. The Structural Design of Tall and Special Buildings, 2014, 23(5): 350-361.
[26]FISTER I, FISTER JR I, YANG X S, et al. A comprehensive review of firefly algorithms[J]. Swarm and Evolutionary Computation, 2013, 13: 34-46.
[27]SAHU R K, PANDA S, PADHAN S. A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 9-23.
[28]FENG Z Q, WANG W Z, ZHANG J R. Probabilistic structural model updating with modal flexibility using a modified firefly algorithm[J]. Materials, 2022, 15(23): 8630.
[29]ZHOU G D, YI T H, ZHANG H, et al. A comparative study of genetic and firefly algorithms for sensor placement in structural health monitoring[J]. Shock and Vibration, 2015, 2015(1): 518692.
[30]LIU M M, ZHANG Y Y, GUO J F, et al. An adaptive lion swarm optimization algorithm incorporating tent chaotic search and information entropy[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 39.
[31]ZHOU G D, YI T H, XIE M X, et al. Wireless sensor placement for structural monitoring using information- fusing firefly algorithm[J]. Smart Materials and Structures, 2017, 26(10): 104002.
[32]LI H, LI S L, OU J P, et al. Modal identification of bridges under varying environmental conditions: Temperature and wind effects[J]. Structural Control and Health Monitoring, 2010, 17(5): 495-512.
[33]PICHIKA S V V S N, YADAV R, RAJASEKHARAN S G, et al. Optimal sensor placement for identifying multi-component failures in a wind turbine gearbox using integrated condition monitoring scheme[J]. Applied Acoustics, 2022, 187: 108505.