|Table of Contents|

[1] ZHOU Guangdong, LONG Wei, SHEN Anbin, ZHANG Jianing, et al. Robustness-oriented optimal sensor placement for structural monitoring considering sensor failures [J]. Journal of Southeast University (English Edition), 2025, 41 (3): 286-294. [doi:10.3969/j.issn.1003-7985.2025.03.004]
Copy

Robustness-oriented optimal sensor placement for structural monitoring considering sensor failures()
考虑传感器失效的鲁棒性结构监测传感器优化布设
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 3
Page:
286-294
Research Field:
Traffic and Transportation Engineering
Publishing date:
2025-09-11

Info

Title:
Robustness-oriented optimal sensor placement for structural monitoring considering sensor failures
考虑传感器失效的鲁棒性结构监测传感器优化布设
Author(s):
ZHOU Guangdong1, LONG Wei2, SHEN Anbin2, ZHANG Jianing1, YANG Jiayi1
1.College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2.China Railway Communications Investment Group Co., Ltd., Nanning 530219, China
周广东1, 龙伟2, 沈安斌2, 张佳宁1, 杨佳怡1
1.河海大学土木与交通学院, 南京 210098
2.中铁交通投资集团有限公司, 南宁 530219
Keywords:
structural health monitoring (SHM) optimal sensor placement (OSP) long-span bridges modal parameter identification firefly algorithm
结构健康监测传感器优化布设大跨桥梁模态参数识别萤火虫算法
PACS:
U446
DOI:
10.3969/j.issn.1003-7985.2025.03.004
Abstract:
Conventional optimal sensor placement (OSP) methods employ the premise that all sensors work perfectly during long-term structural monitoring. However, this premise is often difficult to fulfill in real applications due to poor manufacturing and material aging of sensors, human damage, and electromagnetic interference. This paper presents a robustness-oriented OSP method that considers sensor failures. The OSP problem is designed with consideration of sensor failures to ensure that both complete vibration data collected by all sensors and incomplete vibration data caused by individual sensor failures can accurately identify structural modal parameters. A dispersion-aggregation firefly algorithm (DAFA), which is derived from the basic firefly algorithm, has been proposed to solve this complicated optimization problem. The dispersion and aggregation operators are designed to prevent falling into local optima and to rapidly converge to the global optima. The proposed methodology is confirmed by extracting the robust sensor configuration for a long-span cable-stayed bridge. The robustness of the optimal sensor configurations against sensor failure is thoroughly explored, and the performance of the proposed DAFA is extensively examined.
已有传感器优化布设方法假定所有传感器在结构长期监测期间均能正常工作,但由于生产质量不稳定、材料老化、人为损坏和电磁干扰等因素,这一假定在实际应用中很难满足。本文提出了一种考虑传感器失效的鲁棒性结构监测传感器优化布设方法。首先,建立了考虑传感器失效鲁棒性的传感器优化布设数学模型,以确保所有传感器监测的完整振动数据和个别传感器失效造成的不完整振动数据都能可靠地识别结构模态参数。然后,提出了一种基于基本萤火虫算法的分散聚合萤火虫算法,用于求解最优传感器布设位置。设计了分散算子和聚集算子,用于避免陷入局部最优和快速收敛到全局最优。最后,采用一座大跨度斜拉桥验证了所提方法的有效性,讨论了最优传感器布设方案的鲁棒性,并全面分析了所提分散聚合萤火虫算法的性能。

References:

[1]BATTU R S, AGATHOS K, LONDOÑO MONSALVE J M, et al. Combining transfer learning and numerical modelling to deal with the lack of training data in data-based SHM[J]. Journal of Sound and Vibration, 2025, 595: 118710.
[2]DUAN Y F, DUAN Z T, ZHANG H M, et al. Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees[J]. Journal of Southeast University (English Edition), 2024, 40(3): 221-229.
[3]YUAN Z J, WANG H, MAO J X, et al. Influence study of main cable displacement-controlled device type of long-span suspension bridges on structural mechanical properties[J]. Journal of Southeast University (English Edition), 2025, 41(1): 27-36.
[4]SHAN J Z, ZHANG X, LOONG C N, et al. Predictive maintenance and its applications in civil engineering structures: A review[J]. Journal of Southeast University (English Edition), 2024, 40(3): 245-256.
[5]ZHOU G D, YI T H, XIE M X, et al. Optimal wireless sensor placement in structural health monitoring emphasizing information effectiveness and network performance[J]. Journal of Aerospace Engineering, 2021, 34(2): 04020112.
[6]YI T H, LI H N. Methodology developments in sensor placement for health monitoring of civil infrastructures[J]. International Journal of Distributed Sensor Networks, 2012, 8(8): 612726.
[7]OSTACHOWICZ W, SOMAN R, MALINOWSKI P. Optimization of sensor placement for structural health monitoring: A review[J]. Structural Health Monitoring, 2019, 18(3): 963-988.
[8]TAN Y, ZHANG L M. Computational methodologies for optimal sensor placement in structural health monitoring: A review[J]. Structural Health Monitoring, 2020, 19(4): 1287-1308.
[9]MUSTAPHA S, LU Y, NG C T, et al. Sensor networks for structures health monitoring: Placement, implementations, and challenges: A review[J]. Vibration, 2021, 4(3): 551-585.
[10]HASSANI S, DACKERMANN U. A systematic review of optimization algorithms for structural health monitoring and optimal sensor placement[J]. Sensors, 2023, 23(6): 3293.
[11]PAPADIMITRIOU C. Optimal sensor placement methodology for parametric identification of structural systems[J]. Journal of Sound and Vibration, 2004, 278(4/5): 923-947.
[12]LIU F Q, ZHANG L M. Successive method for optimal placement of actuators and sensors[J]. Journal of Astronautics, 2000, 21(3): 64-69. (in Chinese)
[13]YAO L, SETHARES W A, KAMMER D C. Sensor placement for on-orbit modal identification via a genetic algorithm[J]. AIAA Journal, 1993, 31(10): 1922-1928.
[14]RAO A R M, ANANDAKUMAR G. Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique[J]. Smart Material Structures, 2007, 16(6): 2658-2672.
[15]YI T H, LI H N, ZHANG X D. A modified monkey algorithm for optimal sensor placement in structural health monitoring[J]. Smart Materials and Structures, 2012, 21(10): 105033.
[16]ZHOU G D, YI T H, LI H N. Sensor placement optimization in structural health monitoring using cluster-in-cluster firefly algorithm[J]. Advances in Structural Engineering, 2014, 17(8): 1103-1115.
[17]ZHOU G D, YI T H, ZHANG H, et al. Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm[J]. Smart Structures and Systems, 2015, 16(2): 243-262.
[18]YI T H, ZHOU G D, LI H N, et al. Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm[J]. Structural Control and Health Monitoring, 2017, 24(8): e1958.
[19]CHEN H, YIKAI ZHU Y K, LEI B, et al. Sensor fault self-detection based on the mean shift method[J]. Journal of Southeast University (English Edition), 2024, 40(2): 140-147.
[20]LI L L, LIU G, ZHANG L L, et al. Sensor fault detection with generalized likelihood ratio and correlation coefficient for bridge SHM[J]. Journal of Sound and Vibration, 2019, 442: 445-458.
[21]MA S L, JIANG S F, LI J. Structural damage detection considering sensor performance degradation and measurement noise effect[J]. Measurement, 2019, 131: 431-442.
[22]HUYNH T C, NGUYEN T D, HO D D, et al. Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique[J]. Sensors, 2020, 20(2): 510.
[23]THOMAS G C, CLARK R D. A modal test design strategy for modal correlation[C]//Proceedings of the 13th International Modal Analysis Conference. Schenectady, NY, USA, 1995: 927-933.
[24]YANG X S. Nature-inspired metaheuristic algorithms[M]. Frome, UK: Luniver Press, 2010.
[25]TALATAHARI S, GANDOMI A H, YUN G J. Optimum design of tower structures using firefly algorithm[J]. The Structural Design of Tall and Special Buildings, 2014, 23(5): 350-361.
[26]FISTER I, FISTER JR I, YANG X S, et al. A comprehensive review of firefly algorithms[J]. Swarm and Evolutionary Computation, 2013, 13: 34-46.
[27]SAHU R K, PANDA S, PADHAN S. A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 9-23.
[28]FENG Z Q, WANG W Z, ZHANG J R. Probabilistic structural model updating with modal flexibility using a modified firefly algorithm[J]. Materials, 2022, 15(23): 8630.
[29]ZHOU G D, YI T H, ZHANG H, et al. A comparative study of genetic and firefly algorithms for sensor placement in structural health monitoring[J]. Shock and Vibration, 2015, 2015(1): 518692.
[30]LIU M M, ZHANG Y Y, GUO J F, et al. An adaptive lion swarm optimization algorithm incorporating tent chaotic search and information entropy[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 39.
[31]ZHOU G D, YI T H, XIE M X, et al. Wireless sensor placement for structural monitoring using information- fusing firefly algorithm[J]. Smart Materials and Structures, 2017, 26(10): 104002.
[32]LI H, LI S L, OU J P, et al. Modal identification of bridges under varying environmental conditions: Temperature and wind effects[J]. Structural Control and Health Monitoring, 2010, 17(5): 495-512.
[33]PICHIKA S V V S N, YADAV R, RAJASEKHARAN S G, et al. Optimal sensor placement for identifying multi-component failures in a wind turbine gearbox using integrated condition monitoring scheme[J]. Applied Acoustics, 2022, 187: 108505.

Memo

Memo:
Received 2024-10-19,Revised 2025-04-06.
Biography:Zhou Guangdong (1982—), male, doctor, professor, zhougd@hhu.edu.cn.
Foundation items:The National Natural Science Foundation of China (No.51978243, 52578360).
Citation:ZHOU Guangdong,LONG Wei,SHEN Anbin,et al.Robustness-oriented optimal sensor placement for structural monitoring considering sensor failures[J].Journal of Southeast University (English Edition),2025,41(3):286-294.DOI:10.3969/j.issn.1003-7985.2025.03.004.DOI:10.3969/j.issn.1003-7985.2025.03.004
Last Update: 2025-09-20