)[1]LANG N, WANG D C, CHENG P, et al. Rail surface defect inspection via a self-reference template and similarity evaluation[J]. Measurement Science and Technology, 2022, 33(1): 015401.
[2]LI Y X, MIN Y Z, YUE B. ISRM: Introspective self-supervised reconstruction model for rail surface defect detection and segmentation[J]. Measurement Science and Technology, 2024, 35(5): 055208.
[3]WANG S, ZHANG L J, YIN G J. Defect identification method for steel surfaces based on improved YOLOv5[J]. Journal of Southeast University (English Edition), 2024, 40(1): 49-57.
[4]YE J Q, STEWART E, CHEN Q Y, et al. A vision-based method for line-side switch rail condition monitoring and inspection[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(8): 986-996.
[5]JAGANNATHAN J, SHERAJDHEEN A, VIJAY DEEPAK R M, et al. License plate character segmentation using horizontal and vertical projection with dynamic thresholding[C]//2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICECCN). Tirunelveli, India, 2013: 700-705.
[6]VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732.
[7]SOBEL I, FELDMAN G. A 3 × 3 isotropic gradient operator for image processing[R]. Stanford, CA, USA: Stanford Artificial Intelligence Laboratory, 1968.
[8]ROBERTS L. Machine perception of three-dimensional solids[C]//Optical and Electro-Optical Information Processing. Cambridge, MA, USA: MIT Press, 1963: 159-197.
[9]CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
[10]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany, 2015: 234-241.
[11]QIN X B, ZHANG Z C, HUANG C Y, et al. U2-Net: Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
[12]ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]//4th Deep Learning in Medical Image Analysis (DLMIA) Workshop. Granada, Spain, 2018, 11045: 3-11.
[13]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2023-06-15]. https://arxiv.org/abs/1409.1556v6.
[14]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[15]SHANG L D, YANG Q S, WANG J N, et al. Detection of rail surface defects based on CNN image recognition and classification[C]//2018 20th International Conference on Advanced Communication Technology (ICACT). Chuncheon, Republic of Korea, 2018: 45-51.
[16]ZHOU J, ZHOU Z L, LUO Y, et al. Object detection in remote sensing images based on region mask contrastive distillation[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(3): 761-771. (in Chinese)
[17]XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 3974-3983.
[18]LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Porto, Portugal, 2017: 324-331.
[19]ZHAO P B, QU Z S, BU Y J, et al. PolarDet: A fast, more precise detector for rotated target in aerial images[J]. International Journal of Remote Sensing, 2021, 42(15): 5831-5861.
[20]HOU L P, LU K, XUE J, et al. Shape-adaptive selection and measurement for oriented object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 923-932.
[21]YI J R, WU P X, LIU B, et al. Oriented object detection in aerial images with box boundary-aware vectors[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA, 2021: 2149-2158.
[22]CHEN Z M, CHEN K A, LIN W Y, et al. PIoU loss: Towards accurate oriented object detection in complex environments[C]//European Conference on Computer Vision—ECCV 2020. Glasgow, UK, 2020: 195-211.
[23]YANG X, YAN J C, FENG Z M, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171.
[24]HAN J M, DING J, XUE N, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA, 2021: 2785-2794.
[25]LI J X, TIAN Y, XU Y P, et al. Oriented object detection in remote sensing images with anchor-free oriented region proposal network[J]. Remote Sensing, 2022, 14(5): 1246.
[26]LIAO R X, WU T, ZHANG Y M, et al. Vision-based vessel detection for vessel-bridge collision warnings under complex scenes[J]. Journal of Southeast University (Natural Science Edition), 2024, 40(1): 33-40. (in Chinese)
[27]CHENG G, WANG J B, LI K, et al. Anchor-free oriented proposal generator for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5625411.
[28]HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5602511.
[29]MING Q, MIAO L J, ZHOU Z Q, et al. Sparse label assignment for oriented object detection in aerial images[J]. Remote Sensing, 2021, 13(14): 2664.
[30]MING Q, ZHOU Z Q, MIAO L J, et al. Dynamic anchor learning for arbitrary-oriented object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2355-2363.
[31]DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Republic of Korea, 2019: 6568-6577.
[32]YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 3684-3692.
[33]MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122.
[34]DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, 2019: 2844-2853.
[35]XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada, 2021: 3500-3509.