|Table of Contents|

[1] CHEN Han, LIU Xiangyu, CHENG Jiajun, QIN Jiangfan, et al. Frequency optimization for electrodes in implantable brain-computer interfaces [J]. Journal of Southeast University (English Edition), 2025, 41 (3): 366-374. [doi:10.3969/j.issn.1003-7985.2025.03.012]
Copy

Frequency optimization for electrodes in implantable brain-computer interfaces()
植入式脑机接口电极的频率优化
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 3
Page:
366-374
Research Field:
Information and Communication Engineering
Publishing date:
2025-09-11

Info

Title:
Frequency optimization for electrodes in implantable brain-computer interfaces
植入式脑机接口电极的频率优化
Author(s):
CHEN Han1,2, LIU Xiangyu1, CHENG Jiajun1, QIN Jiangfan1, ZHANG Xueli1
1.School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2.State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106, China
陈翰1,2, 刘翔宇1, 程佳君1, 秦江帆1, 张雪丽1
1.东南大学仪器科学与工程学院,南京 210096
2.智能电网保护和运行控制国家重点实验室,南京 211106
Keywords:
brain-computer interfaces electromagnetic simulation electroencephalography electrodes power density specific absorption rate
脑机接口电磁仿真脑电图电极功率密度比吸收率
PACS:
TN911
DOI:
10.3969/j.issn.1003-7985.2025.03.012
Abstract:
Fully implanted brain-computer interfaces (BCIs) are preferred as they eliminate signal degradation caused by interference and absorption in external tissues, a common issue in non-fully implanted systems. To optimize the design of electroencephalography electrodes in fully implanted BCI systems, this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies. Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate (SAR) of signals at various frequencies. The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coefficients. However, SAR-normalized analysis, which considers both power density and electromagnetic radiation hazards, shows that higher-frequency signals perform better at superficial to intermediate depths. Specifically, at a depth of 2 mm beneath the cortex, the power density of a 6.5 GHz signal is 247.83% higher than that of a 0.4 GHz signal. At a depth of 5 mm, the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%. The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm, 3.5 GHz for 5 mm, 2.45 GHz for depths of 15-20 mm, and 1.8 GHz for 25 mm.
完全植入式脑机接口(BCI)因避免了非全植入式系统中由外部组织干扰和吸收引起的信号退化而成为优先选择。为优化完全植入式脑机接口系统中的脑电图(EEG)电极设计,本文研究了不同频率下微波信号在人体脑组织中的穿透和吸收特性。通过电磁仿真,分析了不同频率信号的功率密度分布和比吸收率(SAR)。结果表明,较低频率信号在功率密度和衰减系数上具有优势,但综合考虑功率密度与电磁辐射危害的SAR归一化分析表明,较高频率信号在浅至中等深度的穿透表现更好。具体而言,在皮层下2 mm深处,6.5 GHz信号的功率密度比0.4 GHz高247.83%;在5 mm深度,3.5 GHz信号的功率密度比0.4 GHz高224.16%。研究表明,6.5 GHz信号适用于2 mm深度电极,3.5 GHz适合5 mm深度电极,2.45 GHz适合15~20 mm深度电极,1.8 GHz适合25 mm深度电极。

References:

[1]LORACH H, GALVEZ A, SPAGNOLO V, et al. Walking naturally after spinal cord injury using a brain-spine interface[J]. Nature, 2023, 618(7963): 126-133.
[2]XIE H, GAO Y X, WANG N, et al. Exploring the enigma of the brain: The development and applications of neural tracing techniques[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(3): 789-798. (in Chinese)
[3]LIN S, JIANG J J, HUANG K, et al. Advanced electrode technologies for noninvasive brain-computer interfaces[J]. ACS Nano, 2023, 17(24): 24487-24513.
[4]SUN H, ZHANG X, WANG B P, et al. Optimal-less channel based mental task brain-computer interfaces[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(5): 934-938. (in Chinese)
[5]WU X L, METCALFE B, HE S H, et al. A review of motor brain-computer interfaces using intracranial electroencephalography based on surface electrodes and depth electrodes[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 2408-2431.
[6]XIA J, ZHANG F, ZHANG L X, et al. Magnetically compatible brain electrode arrays based on single-walled carbon nanotubes for long-term implantation[J]. Nanomaterials, 2024, 14(3): 240.
[7]HUANG Z B, ZHOU Z N, ZENG J S, et al. Flexible electrodes for non-invasive brain-computer interfaces: A perspective[J]. 2022, 10(9): 090901.
[8]MIAN S Y, HONEY J R, CARNICER-LOMBARTE A, et al. Large animal studies to reduce the foreign body reaction in brain-computer interfaces: A systematic review[J]. Biosensors, 2021, 11(8): 275.
[9]ZHANG D M, YIN G D, JIN X J, et al. Two-stage and bi-direction feature selection method for EEG channel based on CSP and SFFS-SFBS[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 125-132. (in Chinese)
[10]PAZHOUHANDEH M R, AMIRSOLEIMANI A, WEISSPAPIR I, et al. Adaptively clock-boosted auto-ranging neural-interface for emerging neuromodulation applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16(6): 1138-1152.
[11]SHEN K, CHEN O, EDMUNDS J L, et al. Translational opportunities and challenges of invasive electrodes for neural interfaces[J]. Nature Biomedical Engineering, 2023, 7(4): 424-442.
[12]SIMMONS A M, TUNINETTI A, YEOH B M, et al. Non-invasive auditory brainstem responses to FM sweeps in awake big brown bats[J]. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208(4): 505-516.
[13]LIU Q, LIANG X, QI W Z, et al. Biomedical microwave-induced thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2230007.
[14]ZHOU Z Y, CHEN B B. Measurement of pulse-modulated radiation field strength[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1186-1191. (in Chinese)
[15]WONGKASEM N. Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues[J]. Electromagnetic Biology and Medicine, 2021, 40(2): 236-253.
[16]State Administration for Market Regulation, National Standardization Administration. Limits for human exposure to electromagnetic fields emitted by mobile communication terminals: GB 21288—2022[S]. Beijing: National Standardization Administration, 2022.
[17]WYDE M E, HORN T L, CAPSTICK M H, et al. Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system[J]. Bioelectromagnetics, 2018, 39(3): 190-199.
[18]GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues: Ⅲ. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293.
[19]ANDREUCCETTI D, FOSSI R, PETRUCCI C. An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz[EB/OL]. (2021)[2024-10-17]. http://nire mf.ifac.cnr.it/tissprop/.
[20]International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)[J]. Health Phys, 2020, 118(5): 483-524.
[21]CHRIST A, KAINZ W, HAHN E G, et al. The virtual family: Development of surface-based anatomical models of two adults and two children for dosimetric simulations[J]. Physics in Medicine and Biology, 2010, 55(2): N23-N38.
[22]HIRATA A, YANASE K, LAAKSO I, et al. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies[J]. Physics in Medicine and Biology, 2012, 57(24): 8427-8442.
[23]MANDIJA S, PETROV P I, VINK J J T, et al. Brain tissue conductivity measurements with MR-electrical properties tomography: an in vivo study[J]. Brain Topogr, 2021, 34(1): 56-63.

Memo

Memo:
Received 2024-12-11,Revised 2025-01-16.
Biography: Chen Han (1977─), male, doctor, associate professor, Hanchen@seu.edu.cn.
Foundation item:The Open Project of State Key Laboratory of Smart Grid Protection and Operation Control in 2022 (No. SGNR0000KJJS2302150).
Citation:CHEN Han,LIU Xiangyu,CHENG Jiajun,et al.Frequency optimization for electrodes in implantable brain-computer interfaces[J].Journal of Southeast University (English Edition),2025,41(3):366-374.DOI:10.3969/j.issn.1003-7985.2025.03.012.DOI:10.3969/j.issn.1003-7985.2025.03.012
Last Update: 2025-09-20