[1]LI H J, YANG S H. Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 261-268.
[2]CURRY G R. A low-cost space-based radar system concept[J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(9): 21-24.
[3]SLOMKA S, GIBBINS D, GRAY D, et al. Features for high resolution radar range profile based ship classification[C]// Proceedings of the Fifth International Symposium on Signal Processing and Its Applications. Brisbane, QLD, Australia, 1999: 329-332.
[4]XING M D. Properties of high-resolution range profiles[J]. Optical Engineering, 2002, 41(2): 493.
[5]DU L, LIU H W, BAO Z, et al. Radar HRRP target recognition based on higher order spectra[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2359-2368.
[6]LI X, WU R X, ZHOU H L, et al. Multi-vehicle object recognition based on YOLOv7-R[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(5): 1260-1270. (in Chinese)
[7]CHEN B J, LI Y R, SHU H Z. GAN-generated face anti-forensics based on image wavelet domain adaptive perturbation[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(5): 1330-1338. (in Chinese)
[8]ZHOU D Y, SHEN X F, YANG W L. Radar target recognition based on fuzzy optimal transformation using high-resolution range profile[J]. Pattern Recognition Letters, 2013, 34(3): 256-264.
[9]XIONG P W, CHEN Z Y, LIAO J J, et al. Tactile image recognition based on improved convolutional attention mechanism[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(1): 175-182. (in Chinese)
[10]LEI S Q, YUE D X, WANG F. Natural scene recognition based on HRRP statistical modeling[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium, 2021: 4944-4947.
[11]LIU Q, ZHANG X Y, LIU Y X. A prior-knowledge-guided neural network based on supervised contrastive learning for radar HRRP recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 2854-2873.
[12]YANG L H, FENG W, WU Y J, et al. Radar-infrared sensor fusion based on hierarchical features mining[J]. IEEE Signal Processing Letters, 2023, 31: 66-70.
[13]KAN S C, CEN Y G, HE Z H, et al. Supervised deep feature embedding with handcrafted feature[J]. IEEE Transactions on Image Processing, 2019, 28(12): 5809-5823.
[14]CRISTIANINT N. An introduction to support vector machines and other kernel-based learning methods[R]. Cambridge, UK: Cambridge University Press, 2000.
[15]WEI Z, JIE W, JIAN G. An efficient SAR target recognition algorithm based on contour and shape context[C]//2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Seoul, Republic of Korea, 2011: 1-4.
[16]PARK J I, PARK S H, KIM K T. New discrimination features for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 476-480.
[17]AI J Q, MAO Y X, LUO Q W, et al. SAR target classification using the multikernel-size feature fusion-based convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5214313.
[18]CHEN S Z, WANG H P, XU F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817.
[19]SHI L C, LIANG Z H, WEN Y, et al. One-shot HRRP generation for radar target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3504405.
[20]LIU Q, ZHANG X Y, LIU Y X. A prior-knowledge-guided neural network based on supervised contrastive learning for radar HRRP recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 2854-2873.
[21]WAN J W, CHEN B, XU B, et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019(1): 5.
[22]CHO J H, PARK C G. Multiple feature aggregation using convolutional neural networks for SAR image-based automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1882-1886.
[23]LIU Z, HU H, LIN Y T, et al. Swin transformer V2: Scaling up capacity and resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA, 2022: 11999-12009.